双层串联微穿孔板吸声体设计理论及应用研究
在微穿孔板吸声体理论的基础上,基于电力声类比等效电路法建立了双层串联微穿孔板吸声体理论分析模型,分析了双层串联微穿孔板吸声体的共振频率ωs与参数k1、r1的关系。将共振频率ωs与前腔深度D1做为两项设计指标,结合单层微穿孔板吸声体的设计方法,提出了一种双层串联微穿孔板吸声体的设计思路,简化了设计工作。
微穿孔板吸声体中的板振动
板振动对微穿孔板吸声体的声学特性存在一定的影响。文章对此影响关系从理论方面进行初步分析,并通过不同材料、不同孔径、不同穿孔率样品在低频、中频驻波管中的大量实验,分析板振动对微穿孔板吸声体吸声性能影响关系的规律性,从而得到对微穿孔板的实际应用具有指导性的结论。
微穿孔板吸声体的研究进展
简述了马大猷教授的微穿孔板基本理论、微穿孔板吸声体在扩散声场以及在高声强环境下的理论要点。比较详细地讨论了30年来与马大猷教授所提理论相对应的实验研究结果及应用发展情况。基于马大猷教授的基本理论,提出了一种新的相关衍生结构——管束微穿孔板。对微穿孔板吸声体的发展趋势做了展望。表明:微穿孔板吸声体将成为新世纪的绿色理想吸声材料。
基于AML的微穿孔板吸声体的声学软件开发
采用aml语言开发了一套微穿孔板吸声体的声学软件。该软件初始参数选择灵活,分析结果直观明了,为用户提供操作简单的界面,从而进一步提高微穿孔板设计效率和准确性,并对工程应用有一定的帮助。
微穿孔板吸声体非线性声学特性初探
文章以马大猷教授提出的微穿孔板非线性声阻公式为依据,提出了非线性声阻作用的临界条件,并由此进行应用于高声强下微穿孔板吸声体的计算机辅助设计。通过实验对宽频带微穿孔板的非线性特性进行初步分析和实验验证
微穿孔板吸声结构计算及其应用
微穿孔板吸声结构具有吸声系数高、吸收频带宽等优点,广泛应用于噪声控制的各个领域根据马大猷的微穿孔吸声理论,总结了微穿孔板吸声结构的吸声原理,并用基于此理论的计算结果与在低频、中频驻波管中实验的结果进行对比,得到了比较满意的结果采用微穿孔板吸声结构,进行汽车发动机隔声降噪模拟实验,结果表明,微穿孔板吸声结构具有良好的降噪功能微穿孔板吸声结构的吸声性能的初步研究,为微穿孔板吸声结构在工程中的应用提供了依据
高温下双层串联微穿孔板结构声学特性研究
在燃烧室的空间和质量有限的情况下,为达到更好的声抑制效果,该文提出了将单层微穿孔板一分为二,采用与单层结构具有相同穿孔率、穿孔半径、质量及占用空间的双层串联微穿孔板结构。通过声-电类比法推导了温度变化条件下双层串联微穿孔板结构吸声系数的计算公式,并与单层结构的吸声特性进行了对比仿真分析,最后得出将单层结构一分为二,采用双层串联结构具有更宽的吸声频带,在高温条件下,其吸声效果更好。
并联微穿孔板吸声结构研究
分析不同共振频率的微穿孔板吸声结构并联的结构模型,并计算了其组合吸声系数。理论计算结果与采用sysnoise软件,根据gb/t18696对并联的微穿孔板吸声系数进行仿真实验得到的结果及已有实验数据进行对比。结果表明,该文中并联微穿孔板吸声结构的声阻抗率及组合吸声系数的计算方法是可行的。
微穿孔板的主动吸声研究
提出用微穿孔板进行主动吸声的方法。用微穿孔板作为主动吸声的材料,检测出入射声波的频率,得到微穿孔板的共振频率,从而得到微穿孔板背后空腔的深度,移动微穿孔板背后的刚性壁以满足空腔深度的要求,使得吸声系数达到最大,从而达到主动吸声的目的。最后,进行了数值计算与实验,计算结果与实验结果能很较好的吻合,说明了该主动吸声方法的可行性。
微穿孔板吸声结构的研究进展
在介绍马大猷开创的微穿孔板吸声结构基础理论的前提下,综述了微穿孔板吸声结构的理论发展、吸声系数实验测量方法以及微穿孔板吸声结构在实际工程领域的一些应用。最后提出微穿孔板研究发展的方向。
穿入铜纤维薄微穿孔板的吸声性能
提出在薄微穿孔板微孔中穿入铜纤维的结构,有效拓宽薄微穿孔板的吸声频带,提高吸声系数,使微穿孔板吸声性能在中低频得到很大的提高。研究结果表明,样品直径为100mm,29mm,穿孔直径为1mm,厚度2mm,穿孔率为3%的微穿孔板,穿入铜纤维的直径为0.13mm,穿入铜纤维为3和4根时,在100hz~1600hz内,共振吸声系数α0达0.99;穿入7至9根时,吸声频带可拓宽1000hz以上;随着穿入纤维数量的增加,吸声频带显著向低频移动,当穿入11根时,移动幅值为464hz。
变截面微穿孔板吸声特性研究
传统的微穿孔板要获得较佳的吸声性能,需要较小孔径的微孔(<0.3mm);在穿孔率不变的情况下,增加板厚,那么板的吸声性能将下降。为了避免这个问题,提出一种新型的微穿孔板结构——变截面微穿孔板。与传统微穿孔板不同,它的微孔的截面积沿其轴向不是恒定的,而是在轴向的一定位置发生突变,从而板存在孔径差异较大的两部分。在马大猷的理论基础上,分析了变截面微穿孔板的吸声特性,并利用传递函数法,通过阻抗管进行了实验。分析和实验结果显示,变截面微穿孔板的吸声性能主要由孔径较小的部分决定,孔径较大的部分主要是增加了板的厚度,对板的吸声性能贡献较小;因此,通过变截面的方法,在增加板厚的同时也能使板维持在较佳的吸声性能水平。
微穿孔板吸声结构的研究进展
微穿孔板共振吸声结构在噪声控制上有着优异的表现,受到广大科研人员的关注。笔者介绍了近年来与微穿孔板共振吸声结构相关的理论研究,包括微穿孔吸声结构的吸声特性以及吸声带宽的理论极限;探讨了微穿孔板和超微孔板的制造技术及这些技术的优缺点;分析了组合微穿孔结构的相关理论计算及试验仿真。在总结前人研究成果的基础上,指出了微穿孔板共振吸声结构在理论研究和实际应用中存在的问题,并对该研究领域的发展趋势做了展望。
一种新型微穿孔板吸声特性研究
传统微穿孔板的穿孔为圆形或狭缝,背面不带毛刺,其吸声系数和吸声频带宽度有待进一步提高。目前出现一种新工艺加工的微穿孔板,其穿孔为三角形,且背面带有毛刺。带刺三角孔微穿孔板与圆孔微穿孔板不同,不能用原有方法计算其声阻抗。文章采用试验研究的方法测定带刺三角孔微穿孔板的声阻抗,分析其声学特性,为工程应用提供参数依据。通过驻波管试验测量单层和双层带刺三角孔微穿孔板结构的吸声系数,并与圆孔微穿孔板结构进行比较分析。研究结果显示,新工艺加工的带刺三角孔微穿孔板与圆孔微穿孔板相比较,声阻有了较大幅度的提高,声抗基本保持不变;带刺三角孔微穿孔板结构的吸声系数有了显著的提升,吸声频带也得到一定程度的拓宽。
EPR改性PP微穿孔板吸声性能的研究
用自行研制的epr改性pp基阻燃泡沫材料制成微穿孔板,研究其吸声特性及规律,并与epr改性pp基阻燃非泡沫材料微穿孔板进行对比。结果表明,泡沫材料微穿孔板吸声体在中、低频率区域的最大吸声因数可达098以上;在125~2000hz范围内平均吸声因数可达052以上。
微穿孔板吸声结构水下应用研究
马大猷教授提出的微穿孔板吸声结构在空气噪声降低和隔离方面得到了广泛的应用,但未见水下应用的相关研究和报道。本文将空气中微穿孔板理论应用到水中,得到了水下微穿孔板吸声结构的吸声公式。通过理论分析,得出了微穿孔板结构直接应用于水中无法获得宽频吸收的结论。提出了通过匹配液将微穿孔板间接应用到水下的设想。设计了单层板和双层板吸声结构,并对它们的吸声特性进行了理论分析与仿真。结果表明,本文设计的微穿孔板吸声结构在水中能够获得优于空气中的宽频带吸声效果。实验测量了自制的微穿孔板吸声结构,吸声系数的测量值与理论曲线基本吻合,从而验证了理论分析的正确性。
微穿孔板吸声结构在阶梯教室中的应用
依据马大猷教授的微穿孔板基本理论,进行参数选择并设计了微穿孔吸声反射板结构,用于阶梯教室中,分析了这种微穿孔吸声反射板结构在阶梯教室中的声反射和声吸收的性能。
微穿孔板吸声结构的机理及应用探讨
本文主要探讨微穿孔板吸声机理、吸声系数与频率的关系,以及在室内的吸声处理,降低噪声、消声等方面的应用。并指出微穿孔板吸声结构的吸声性能优于其它矿棉吸声材料,能够较好地改善建筑声学功能,可广泛应用于吸声降噪工程,效果理想。
微穿孔板结构特性理论对比分析
传统的声电类比法在单层微穿孔板吸声结构中的计算,得到广泛应用,但由于在双层微穿孔板结构中存在较大误差,于是提出用传递矩阵法对微穿孔板吸声结构进行分析。本文对比分析声电类比法与传递矩阵法在微穿孔板结构模型中的应用,从而有效设计微穿孔板吸声结构参数设计的实验方案。
孔中介质对厚微穿孔板吸声性能的影响
以厚度为10mm的环氧树脂基厚微穿孔板为研究对象,分别选择空气、水、聚乙烯醇、羊毛纤维作为孔中介质,研究各种介质对微穿孔板吸声性能的影响。结果发现,通过在孔中加入纤维材料可以在一定程度上弥补因材料厚度增加而导致的吸声性能的减弱。当平均每孔中穿入53根羊毛纤维,后空腔深度为20mm时,厚微穿孔板共振吸收频率为956hz,峰值吸声系数可达0.94。有效吸声频带范围为612hz-1600hz以上。
羊毛纤维对薄微穿孔板吸声性能的影响
选择厚度为2mm的薄微穿孔板,研究羊毛纤维穿入率、穿入量和穿孔率对微孔板吸声性能的影响。在100~1600hz范围内,随着羊毛纤维穿入率和穿入量的增加,共振吸声频率均向低频移动,吸声频带都得到拓宽。当羊毛纤维穿入率从0%增加到100%时,共振吸收峰向低频移动了340hz,频带拓宽346hz以上。当穿入量从0根增至160根时,共振吸声频率向低频移动340hz;当穿入量约为106根时,频带拓宽360hz以上,共振吸声系数为0.92。而当穿孔率为1%时,穿入羊毛纤维使最大吸声系数降低,吸声频带变窄;但随着穿孔率的增加,穿入羊毛纤维可以显著拓宽微穿孔板的吸声频带,共振吸声系数也随之增大。当穿孔率为6%时,穿入羊毛纤维前后,最大吸声系数从0.68增至0.97,共振吸声频率从1158hz降至986hz,频带拓宽了674hz以上。穿孔率越大,羊毛纤维改善微穿孔板吸声性能的优势越显著。
双层微穿孔板与共振性复合消声器
空气压缩机在各个领域中已被广泛用作气体动力,特别在化工系统中,常为工艺所需而设置站、房之类。但当机组正常运行时,即产生了多种类型强噪声,它不仅严重危害了工人们身心健康,还污染了周围环境。就复动式空压机而言,活塞往复运动将大流量气体,间歇经吸入口进入机内,在吸入口产生了高速气流,形成了气体动力性噪声,它是空压机主要噪声源。而这些间歇压力脉冲所致往往是低频为主,易于激发
文辑推荐
知识推荐
百科推荐
职位:弱电预算员
擅长专业:土建 安装 装饰 市政 园林