高能磷酸化合物

高能磷酸化合物(energy rich phosphate compounds)是指水解自由能在20.92KJ/mol以上的磷酸化合物。

代谢过程中出现的磷酸化合物,尽管它们都是脱水形成的,但是将它们再水解时,释放的自由能有极大的差异。有些自由能的变化为-2000到-3000cal,如6-磷酸葡萄糖、3-磷酸甘油、腺核苷酸等;另有一些如焦磷酸、乙酰磷酸、肌酸磷酸、磷酸烯醇式丙酮酸等磷酸化合物,每克分子水解时,自由能的变化为-7000到-12000cal。根据这些实验结果,生化上将后一类磷酸化合物称作高能磷酸化合物,前一类称低能磷酸化合物(以5000cal为界限)。

高能磷酸化合物基本信息

中文名称 高能磷酸化合物 英文名 energy rich phosphate compound
产生 代谢过程中出现 拼音 gao neng lin suan hua he wu
代表物 ATP,氨甲酰磷酸 专业 化学类

高能磷酸化合物ATP--最常见的高能磷酸键化合物

ATP

生命体内最常见、最重要的高能磷酸化合物--ATP【三磷酸腺苷】(Adenosine triphosphate)

在生物化学中,三磷酸腺苷是一种核苷酸,作为细胞内能量传递的"分子通货",储存和传递化学能。ATP在核酸合成中也具有重要作用。

ATP是三磷酸腺苷的英文名称缩写。ATP分子的结构是可以简写成A-P~P~P,其中A代表腺苷,P代表磷酸基团,~代表一种特殊的化学键,叫做高能磷酸键,高能磷酸键断裂时,大量的能量会释放出来。ATP可以水解,这实际上是指ATP分子中高能磷酸键的水解。高能磷酸键水解时释放的能量多达30.54kJ/mol,所以说ATP是细胞内一种高能磷酸化合物。

化学性质

ATP由腺苷和三个磷酸基所组成,分子式C10H16N5O13P3,化学简式C10H8N4O2NH2(OH)2(PO3H)3H,分子量507.184。三个磷酸基团从腺苷开始被编为α、β和γ磷酸基。ATP的化学名称为5'-三磷酸-9-β-D-呋喃核糖基腺嘌呤,或者5'-三磷酸-9-β-D-呋喃核糖基-6-氨基嘌呤。

合成

ATP的立体结构ATP可通过多种细胞途径产生,最典型的如在线粒体中通过氧化磷酸化由ATP合成酶合成,或者在植物的叶绿体中通过光合作用合成。ATP合成的主要能源为葡萄糖和脂肪酸。每分子葡萄糖先在胞液中产生2分子丙酮酸同时产生2分子ATP,最终在线粒体中通过三羧酸循环产生最多36分子ATP。

人体中的ATP

人体中ATP的总量只有大约0.1摩尔。人体细胞每天的能量需要水解200-300摩尔的ATP,这意味着每个ATP分子每天要被重复利用2000-3000次。ATP不能被储存,因为ATP的合成后必须在短时间内被消耗.

ATP对人体供能

无氧代谢剧烈运动时,体内处于暂时缺氧状态,

在缺氧状态下体内能源物质的代谢过程,称为无氧代谢。它包括以下两个供能系统。

①非乳酸能(ATP-CP)系统-一般可维持10秒肌肉活动

无氧代谢

②乳酸能系统-一般可维持1~3分的肌肉活动

非乳酸能(ATP-CP)系统和乳酸能系统是从事短时间、

剧烈运动肌肉供能的主要方式。ATP释放能量供肌肉收缩的时间仅为1~3秒,

要靠CP分解提供能量,但肌肉中CP的含量也只能够供ATP合成后

分解的能量维持6~8秒肌肉收缩的时间。因此,

进行10秒以内的快速活动主要靠ATP-CP系统供给肌肉收缩时的能量。

乳酸能系统是持续进行剧烈运动时,肌肉内的肌糖元在缺氧状态下进行酵解,

经过一系列化学反应,最终在体内产生乳酸,同时释放能量供肌肉收缩。

这一代谢过程,可供1~3分左右肌肉收缩的时间。

禽用机理

【作用与用途】1.用于肉鸡、肉鸭、猪、肉牛、肉羊、鱼、虾等肉质动物的增肥、促生长;2.用于因疾病导致的动物饮水、采食量下降,快速补充机体能量水平;3.使用本品能促使动物发病后快速恢复健康;4.适用于动物因疾病、药物、毒素等各种致病因素引起的肝脏损伤、肾脏损伤、肠粘膜损伤、输卵管损伤后的修复。

高能磷酸化合物造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
磷酸 品种:磷酸;含量:85%; 查看价格 查看价格

瑞奇欧

t 13% 宁夏瑞奇欧商贸有限公司
磷酸 品种:磷酸;含量:85%; 查看价格 查看价格

瑞奇欧

t 13% 宁夏瑞奇欧商贸有限公司
磷酸 查看价格 查看价格

t 13% 湖北兴银河化工有限公司
磷酸 工业 查看价格 查看价格

t 13% 武汉欣万维化工有限公司
磷酸 AR 查看价格 查看价格

kg 13% 武汉市洪山中南化工试剂有限公司
磷酸 60% 查看价格 查看价格

t 13% 武汉市洪山中南化工试剂有限公司
磷酸 35kg 查看价格 查看价格

t 13% 昆明市长乐化工有限公司
磷酸 35kg/桶 查看价格 查看价格

升阳

13% 长沙升阳化工材料有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
磷酸 0.85 查看价格 查看价格

kg 韶关市2010年5月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2008年2月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2007年6月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2007年2月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2007年1月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2006年3月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2005年11月信息价
磷酸三纳 查看价格 查看价格

kg 韶关市2005年3月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
化合物自流地坪卷材 0.26mm厚防尘、防,PVC|100m² 1 查看价格 东莞市利士实业投资有限公司 广东  江门市 2014-12-02
无线挥发性有机化合物监测终端 1.大气有机挥发物测量范围:0-20ppm(异丁烯标定);分辨率:5ppb;测量精度:0.01ppm±8%;2.温度测量:测量范围:-20-80℃; 分辨率:0.01℃; 测量精度:±0.3℃;3.|5台 1 查看价格 武汉东宏东瑞科技有限公司 广东  阳江市 2022-08-04
总挥发性有机化合物(TVOC)测定仪 PGM-7240K(美国)|5936台 1 查看价格 北京世纪诚达试验仪器(集团)制造有限公司 北京  北京市 2015-12-03
总挥发性有机化合物(TVOC)检测仪 PC5000Exppb级|560台 1 查看价格 北京欧亚星宇科技有限公司 北京  北京市 2015-10-02
总挥发性有机化合物(TVOC)检测仪 PGM-7240/7240K|4952台 1 查看价格 北京欧亚星宇科技有限公司 北京  北京市 2015-06-18
疏水化合孔栓 常用|40000L 1 查看价格 珂玛仕防水集团 广东  中山市 2016-05-09
总挥发性有机化合物(TVOC)测试仪Pcm-7240 PGM-7240|4套 1 查看价格 深圳市深博瑞仪器仪表有限公司 广东   2017-11-24
疏水化合孔栓(克汰系统) 防水材料|1000kg 1 查看价格 厦门科马是防水科技有限公司 广东  肇庆市 2014-09-02

其他常见的高能磷酸化合物

磷酸肌酸

磷酸肌酸主要存在于动物和人体细胞中,特别是骨骼肌细胞中,当由于能量大量消耗而使细胞中ATP含量过分减少时,磷酸肌酸就释放出所储存的能量,供ADP合成为ATP,这是动物体内ATP形成的一个途径。当肌细胞中的ATP浓度过高时,肌细胞中的ATP可将其中的高能磷酸键转移给肌酸,生成磷酸肌酸,其变化可表示为:

磷酸肌酸是能量的一种储存形式,但是不能直接被利用。对于动物和人来说,它在能量的释放、转移和利用之间起着缓冲作用,使细胞内ATP的含量保持相对的稳定。

医疗用途:心脏问题。

体育用途:磷酸肌酸是一种可以提高肌肉力量的高能化合物,与蛋白合成激素结合使用可达到最佳效果。

AMP

AMP一磷酸腺苷(adenosine monophosphate)

由一分子腺苷与一个磷酸根组成的化合物,是一种核苷酸。它同时也是我们常说的腺嘌呤核糖核苷酸,RNA的组成单位之一。

ADP

ADP--二磷酸腺苷(adenosine diphosphate) 由一分子腺苷与两个相连的磷酸根组成的化合物,是一种核苷酸。在生物体内,通常为三磷酸腺苷(ATP)水解失去一个磷酸根,并释放能量后的产物。

当一个ATP分子的磷酸根水解断裂时,会产生二磷酸腺苷,并释放出7.3千卡的能量。

反之,二磷酸腺苷与磷酸根反应(吸收能量)会生成三磷酸腺苷。在光合作用中吸能过程就有此反应。

其它三磷酸苷

活细胞中也有其他的高能三磷酸盐如鸟苷三磷酸。能量可以在这些三磷酸盐和ATP中由磷酸激酶催化反应之类的反应转移:当磷酸键被水解的时候能量就会被释放。这种能量可以被多种酶、肌动蛋白和运输蛋白用于细胞的活动。水解还会生成自由的磷酸盐和二磷酸腺苷。二磷酸腺苷又可以被进一步水解为另一个磷酸离子和一磷酸腺苷。ATP也可以被直接水解为一磷酸腺苷和焦磷酸盐,这个反应在水溶液中是高效的不可逆反应。

高能磷酸化合物是指水解时释放的能量在20.92kJ/mol以上的磷酸化合物。机体内有许多磷酸化合物如ATP,1,3-二磷酸甘油酸,氨甲酰磷酸,磷酸烯醇式丙酮酸,磷酸肌酸,磷酸精氨酸等,它们的高能磷酸键断裂时,可释放出大量的自由能,这类化合物称为高能磷酸化合物。ATP是这类化合物的典型代表。ATP水解生成ADP及无机磷酸时,可释放自由能7.3千卡(30.52千焦)。一般将水解时释放自由能在5.0千卡(20.9千焦)以上的称为高能化合物。5.0千卡以下的称为低能化合物,化学家认为键能是指断裂一个键所需要的能量,而生物化学家所指的是含有高能键(酸酐键)的化合物水解后释放出的自由能。高能键用"~"表示。

高能磷酸化合物常见问题

  • CH3OH是极性化合物还是非极性化合物?

    高中时极性可理解为电性。甲醇看成甲烷去掉一个氢,加上一个羟基,无论怎么放羟基分子都不对称,拉扯电子力不平衡,电性不平衡,所以是极性分子。且氧的电负性远强于碳,可知甲醇是强极性分子,

  • 四氯化硅是共价化合物还是离子化合物

    是共价化合物。主要以共价键结合形成的化合物,叫做共价化合物。不同种非金属元素的原子结合形成的化合物(如CO2、ClO2、B2H6、BF3、NCl3等)和大多数有机化合物,都属于共价化合物。在共价化合物...

  • 含有磺酸基团的高分子化合物都有哪些

    水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可...

从化学结构上含高能磷酸键的化合物分为:1、磷酸酐,如焦磷酸,核苷酸;2、羧酸和磷酸合成的混合酸酐,如乙酰磷酸,1,3-二磷酸甘油酸,氨基酰-AMP;3、烯醇磷酸,如磷酸烯醇式丙酮酸;4、磷氨酸衍生物(R-NH-PO3H2),如磷酸肌酸。

高能磷酸化合物的缺乏

心肌正常情况下以有氧代谢形式生成三磷酸腺苷(ATP)供作功需要。心肌缺血时则转为无氧代谢为主,ATP合成减少,以致心舒缩功能障碍。在犬的实验中证明,心肌严重缺血15分钟(结扎冠状动脉左旋支),心肌发生可逆性损伤。此时如果得到血液再灌注,则细胞并不死亡。但有很多报告指出,短时间缺血后,收缩功能长时间不能恢复。究其原因,多认为与ATP水平的低下有关。研究证明缺血15分钟时不仅ATP减少60%。总腺苷酸池也减少50%。ADP也轻度减少(可能转为ATP或AMP),AMP明显升高,但其升高程度小于ATP减少辐度。再灌注20分钟ATP明显回升,但只接近正常的一半,再灌注24小时仍然维持在低水平上,只有在再灌注4天后ATP及总腺苷池才近于恢复,但仍低于非缺血区(→图)。

以大鼠离体作功心脏为模型(Neely氏模型),先在20℃低温下给心脏停跳液,再短时间全心缺血(夹住主动脉)后,再灌注生理溶液。结果是给停跳液30分钟再缺血30分钟后,ATP几乎完全丧失,ADP明显减少,AMP明显增加,总腺苷酸量显著降低。再灌注60分钟可使ATP明显回升,但不及正常对照的一半,而总腺苷酸量则明显低于给停跳液后,比正常对照减少50%。上述研究提示缺血及再灌注损伤的心肌有氧代谢性发生严重损伤,影响能量代谢及心肌功能的恢复。

再灌注时高能磷酸化合物之所以恢复慢且总腺苷酸水平明显下降,可能与下列因素有关。

(一)缺血心肌的代谢障碍主要表现为对氧的利用能力受限,有氧代谢严重受损。在缺血进入不可逆阶段再灌注时,氧的利用并不增加,心肌只能利用运至心肌的氧的17%。氧的利用能力受限与缺血及再灌注所致线粒体受损有关。

(二)ATP合成的前身物质(腺苷、肌苷、次黄嘌呤等)在再灌时被冲洗出去,使心肌失去再合成高能磷酸化合物的物质基础。实验证明在再灌注液中补充肌苷或谷氨酸能促进ATP的合成及心功能的恢复。

3.线粒体膜发生氧自由基诱发的脂质过氧化反应使线体受损。线粒体膜富有磷脂,线粒体在缺氧时又是产生自由基的场所,因此极易引起膜脂过氧化使线粒体功能障碍。

高能磷酸化合物文献

使用磷酸化处理提高钢-塑复合材料的粘接性能 使用磷酸化处理提高钢-塑复合材料的粘接性能

格式:pdf

大小:277KB

页数: 2页

评分: 4.7

研究了钢/粘接剂/塑料层状复合材料的粘接性能。使用两种钢基材进行比较:一种未经任何表面处理,另外一种经过磷酸化表面处理。剥离强度测试来定量分析钢/粘接剂/塑料之间的干和湿两种状态的粘接性能。结果表明,表面磷酸化处理钢的粘接性能和耐水性明显地提高。

立即下载
一种链状磷酸铝骨架化合物的离子热合成与表征 一种链状磷酸铝骨架化合物的离子热合成与表征

格式:pdf

大小:277KB

页数: 1页

评分: 4.3

一种链状磷酸铝骨架化合物的离子热合成与表征

立即下载

高能磷酸化合物是指水解时释放的能量在20.92kJ/mol以上的磷酸化合物。重要的有ATP和磷酸肌酸。磷酸肌酸主要存在于动物和人体细胞中,特别是骨骼肌细胞中,当由于能量大量消耗而使细胞中ATP含量过分减少时,磷酸肌酸就释放出所储存的能量,供ADP合成为ATP,这是动物体内ATP形成的一个途径。当肌细胞中的ATP浓度过高时,肌细胞中的ATP可将其中的高能磷酸键转移给肌酸,生成磷酸肌酸,其变化可表示为:

磷酸肌酸是能量的一种储存形式,但是不能直接被利用。对于动物和人来说,它在能量的释放、转移和利用之间起着缓冲作用,使细胞内ATP的含量保持相对的稳定。

高能磷酸化合物的定义

代谢过程中出现的磷酸化合物,尽管它们都是脱水形成的,但是将它们再水解时,释放的自由能有极大的差异。有些自由能的变化为-2000到-3000cal,如6-磷酸葡萄糖、3-磷酸甘油、腺核苷酸等;另有一些如焦磷酸、乙酰磷酸、肌酸磷酸、磷酸烯醇式丙酮酸等磷酸化合物,每克分子水解时,自由能的变化为-7000到-12000cal。根据这些实验结果,生化上将后一类磷酸化合物称作高能磷酸化合物,前一类称低能磷酸化合物(以5000cal为界限)。

从化学结构上含高能磷酸键的化合物分为:1、磷酸酐,如焦磷酸,核苷酸;2、羧酸和磷酸合成的混合酸酐,如乙酰磷酸,1,3-二磷酸甘油酸,氨基酰-AMP;3、烯醇磷酸,如磷酸烯醇式丙酮酸;4、磷氨酸衍生物(R-NH-PO3H2),如磷酸肌酸。

生命体内最常见、最重要的高能磷酸化合物

2.1、ATP

2.1.1、ATP概述

ATP在一切生物的生命活动中都起着重要作用,在细胞的细胞核、细胞质和线粒体中都有ATP存在。生命体内的能量存储在化学键中,如糖类、脂肪和蛋白质中,但在生命活动过程中直接使用的能量是ATP,它通过磷酸化作用将储存在高能磷酸键中的能量释放出来,驱动相应的化学反应,产生各种生命活动,如肌肉的收缩,DNA的复制等。ATP的产生在细胞内主要通过细胞呼吸实现。ATP的结构如下图所示:

图1 ATP的结构

当pH=7.0时,因ATP和ADP的磷酸基团几乎完全解离而成为多电荷负离子形式:ATP4-和 ADP3-。在细胞内,因有大量Mg2+离子存在,而使ATP和ADP结合成为MgATP2-和MgADP-复合物形式。因此ATP参与生化反应多以ATP-Mg复合体的形式参与。

图2 MgATP2-和MgADP-复合物

在不同的磷酸化合物之间△G°′的大小并没有高能和低能的明显界限。从表1中可看出,△G°′值是逐步下降的。ATP所释放的自由能值正处在中间的位置。

表1中在ATP以上的任何一种磷酸化合物都倾向于将磷酸基团转移给在它以下的磷酸受体分子。而ATP则倾向于将其磷酸基团转移给在它以下的受体,表中清晰表明了不同磷酸化合物其磷酸基团转移的热力学趋势或转移势能的大小(一般用无方向的正值表示)。ATP末端磷酸基团水解时,其标准自由能变化为-7.3千卡/摩尔(-30.5千焦/摩尔)。因此它被称为生命活动中的"能量货币"。

2.1.2、ATP的结构特性与其自由能释放

ATP水解时释放出较高的标准自由能,和它的结构特点有直接关系。在它的结构中除酸酐键本身的特点外影响自由能释放的还有三个重要的因素:

其一是它的三个磷酸基团,使它在pH7.0时带有4个负电荷并在水解是形成三种产物,ADP3-,HPO42-和H+。在标准状态下,这三种产物的浓度都为1mol/L,而在pH7.0时的H+浓度只有10-7mol/L,根据质量作用定律,H+离子的低浓度即导致ATP4-向分解的方向进行,如下式所示:

其他磷酸化合物如6-磷酸葡萄糖在pH 7.0水解时,不产生额外的氢离子,因此也没有像ATP水解那样的推动力。

其二是ATP在 pH7.0时它所带的 4个电荷的作用,这4个负电荷在空间上相距很近,它们互相排斥,当ATP的末端磷酸基团脱下后,分子内相同电荷的斥力由于形成ADP3-和HPO42-而缓和。ADP3-和HPO42-再结合而形成ATP分子的可能性极小,因此促使ATP向水解的方向进行。

而6-磷酸葡萄糖水解后形成的葡萄糖分子没有电荷,葡萄糖和HPO42-互不排斥,因此比较易于再结合形成6-磷酸葡萄糖。

其三是ATP水解后所形成的产物ADP3-和HPO42-都是共振杂化物(resonance hybrids),其中某些电子所处的位置和在ATP分子中相比,正是具有最小能量的构象形式,因此当ATP水解时产物ADP3-和HPO42-中的电子可降到最低能水平而促使ATP释放较多的自由能。

2.1.3、ATP系统的动态平衡

生活细胞在生命活动中无时无刻不需要能量供应,可以理解 ATP的消耗是可观的,ATP依靠ATPADP系统传递磷酸基团并提供能量,也靠它不断补充自己。细胞合成ATP的速度受细胞消耗ATP速度的调控,ADP的含量对ATP的合成速度起直接的调控作用。细胞内有一系列的调节系统,一方面提供细胞所需的ATP,另一方面使ATP仍能维持相对恒定的水平,这就是动态平衡。ATP以及其他许多物质在机体内的动态平衡,构成机体维持正常生命活动所需要的相对稳定的内环境。

2.2、磷酸肌酸

2.2.1、磷酸肌酸概述

磷酸肌酸又称肌酸磷酸,肌酸N-磷酸。肌肉或其他兴奋性组织(如脑和神经)中的一种高能磷酸化合物,是高能磷酸基的暂时贮存形式。它属于氮磷键型中的胍基高能磷酸化合物之一。是重要的磷酸原(phosphagen),即磷酸贮存库式物质之一。磷酸肌酸是人体内自有的活性物质,是人体重要的能量供应源,为ATP补充能量,腺苷三磷酸(ATP)虽然在提供生物能方面起重要作用,但它并非是化学能的贮存库,仅仅是携带或传递者。每摩尔磷酸肌酸释放10.3千卡的自由能,比ATP释放的能量(每摩尔7.3千卡)多些。 起贮存能量作用的物质在脊椎动物或某些非脊椎动物中主要是依靠磷酸肌酸。在脊椎动物中,肌酸与ATP反应可逆地生成磷酸肌酸,这个反应是由肌酸激酶催化的。

图3 磷酸肌酸与肌酸

2.2、磷酸肌酸能量释放及与ATP的转换

ATP与ADP间的相互转换在生物体内并非单独发生,而常与另一对化合物的相互转换偶联。在这里,ATP与ADP间的相互转换与磷酸肌酸与肌酸的相互转换偶联,ATP与ADP间的相互转换还可以与磷酸精氨酸与精氨酸的相互转换偶联。

磷酸肌酸能在肌酸激酶的催化下,将其磷酸基转移到ADP分子中。当一些ATP用于肌肉收缩,就会产生ADP。这时,通过肌酸激酶的作用,磷酸肌酸很快供给ADP以磷酸基,从而恢复正常的ATP高水平。由于肌肉细胞的磷酸肌酸含量是其ATP含量的3~4倍,前者可贮存供短期活动用的、足够的磷酸基团。在活动后的恢复期中,积累的肌酸又可被ATP磷酸化,重新生成磷酸肌酸,这是同一个酶催化的相反的反应。因为细胞中没有其他合成和分解磷酸肌酸的代谢途径,此化合物很适合完成这种暂时贮存的功能。在许多无脊椎动物中,磷酸精氨酸代替磷酸肌酸为能的贮存形式。可用人的短跑为例说明磷酸肌酸的功能。肌肉中磷酸肌酸的含量为17微摩尔/克,全速短跑可消耗磷酸肌酸13微摩尔/克,故它仅可作为最初4秒钟的能量来源,但它可提供时间来调节糖酵解酶的活性,使肌肉通过酵解得到能量。

磷酸肌酸的水解所以伴随大量的自由能变动,认为与磷酸肌酸的形成相反,出现了较多的共振体,增高了共振能或共振稳定性。

2.3、其他高能磷酸化合物简介

除了上面介绍的两个最常见、最重要的高能磷酸化合物外,生命体内还存在着很多种类的高能磷酸化合物。

磷酸烯醇式丙酮酸(PEP):参与糖酵解,是生物氧化过程中的重要中间产物。另外,C4植物在进行光合作用的时候,首先把CO2和PEP在PEP羧化酶的催化下,形成草酰乙酸,这样,大大提高了光合作用的效率。

α-甘油磷酸:,细胞借助于α-磷酸甘油与磷酸二羟丙酮之间的氧化还原转移还原当量,使线粒体外来自NADH的还原当量进入线粒体的呼吸链氧化,从而产生ATP。

图4 α-甘油磷酸穿梭机制

dNTP: dNTP即指的是常见的四种脱氧核糖核苷酸,包括dATP、dTTP、dCTP和dGTP。它们是合成DNA的材料。

高能磷酸化合物相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏