开孔矩形翅片椭圆管流动及传热特性的数值模拟
对电站空冷凝汽器矩形翅片椭圆管空气侧的流动与传热特性进行了数值模拟,分析了翅片上有无扰流孔两种情况下矩形翅片表面的局部表面传热系数分布规律。对影响空气侧传热和流动性能的因素,包括扰流孔数、扰流孔尺寸、扰流孔位置进行了优化分析。数值模拟结果表明:随着扰流孔数的增加,表面传热系数和流动阻力逐渐增加,在一定范围内,换热量也不断增加;随着扰流孔的尺寸增大,表面传热系数和流动阻力均增大,但是总换热量减少;相对来说,扰流孔的位置对表面传热系数和流动阻力的影响不大。
开孔矩形翅片椭圆管流动与换热特性的数值研究
对电站直接空冷系统的基本换热元件矩形翅片椭圆管建立三维物理数学模型,对空气侧流动和传热性能进行数值研究.分析了不同迎面风速下翅片上无扰流孔和开有扰流孔两种情况下矩形翅片表面的局部表面传热系数分布规律,发现椭圆基管后存在的尾流区使得翅片的强化换热作用减弱。比较了扰流孔的尺寸、数目和位置对管外空气侧流动与换热的影响,结果表明:扰流孔尺寸对流动与换热存在明显影响,而扰流孔数目和位置的影响相对比较小.
矩形翅片椭圆管束性能研究及场协同分析
矩形翅片椭圆管束性能研究及场协同分析——利用cfd方法对空冷系统的基本换热元件矩形翅片椭圆管进行了数值模拟;与实验数据相比较,研究了其在不同迎面风速下的阻力特性与换热特性,拟合出了三排管对流换热系数和协同角随迎面风速的变化关系;并采用场协同原理...
矩形钢翅片椭圆管簇的试验研究
用于大型电站的钢制方翅片椭圆管空冷换热器,并按电站空冷器的通用排列形成制造管族试验小样,通过实验得出其换热和管外阻力性能及二者与迎面风速的关系以满足产品设计优选的需要,同时还按近似等换热面积制造了一个钢管铝轧片式圆管族小样,与其进行对比实验。
矩形钢翅片椭圆管簇的试验研究
本文着重阐述了电站凝汽器空冷系统的空冷式换热器所用的矩形钢翅片椭圆管簇小样的试验研究。通过对小样放热及阻力的试验,得出不同迎面风速下的放热性能及空气侧阻力性能的关系。
钢制椭圆管矩形翅片空冷传热元件热力及阻力性能试验研究
通过对钢制椭圆管矩形翅片的不同管径、不同翅片间距的空冷传热元件进行热力及阻力性能试验,给出了相应的传热关联方程式及阻力方程式,可供工程设计时参考。
钢制椭圆管矩形翅片空冷器的研制应用
研制的新型空冷器用椭圆管代替圆管,以钢制矩形翅片套在椭圆管上,翅片上开有扰流孔,管束热浸锌,其总传热系数比普通圆管缠绕翅片空冷器大一倍左右。已在炼油厂催化装置分馏系统上安全运行3年多。
内插梯形扰流片的矩形通道内涡流和传热特性
利用realizablek-ε湍流模型对带缺口的梯形扰流片进行流动和传热特性的数值模拟,研究了梯形扰流片的缺口位置及流动方式对矩形通道内流场以及传热的影响,同时通过对涡量、流线、流速分布、压力变化、湍流强度等的分析,揭示了扰流片强化传热的机理。结果表明,逆流时nusselt数比顺流时提高了21.7%,同时摩擦因子也提高了25%。顺流时内侧缺口绕流片提高了传热系数的同时也增加了摩擦阻力,而外侧缺口的绕流片降低了传热系数同时也降低了形状阻力。研究发现较低reynolds数下(10000<re<14000),逆流体现了较好的综合性能,但较高reynolds数下(14000<re<20000),带缺口的绕流片则表现更好的综合性能。由于kelvin-helmholtz不稳定性导致了绕流片顶端后缘产生自由剪切层并诱发了发夹涡;绕流片的前后压差导致了流场内流体的旋流运动,形成了两个纵向涡;扰流片背面的逆压梯度产生了回流并形成回流涡。纵向涡强化了壁面与流动中心的对流传递过程,发夹涡则强化了主流区的流动混合,两种涡的共同作用加速了壁面的热量交换,实现了强化传热。
攻击角对纵向涡错排椭圆管板式翅片强化传热的影响
利用萘升华传质/传热比拟实验方法,研究了纵向涡产生器攻击角对椭圆管板式翅片换热和阻力特性的影响,分析了纵向涡错排椭圆管板式翅片换热器在不同纵向涡产生器的攻击角时的传热与阻力特性,为换热器设计提供了一定的理论依据。
窄缝矩形通道单相流动及传热实验研究
以垂直向上窄缝矩形通道内去离子水为流动介质,对单相等温流动及恒热流密度条件下的单相传热进行了实验研究。结果表明,窄缝矩形通道内的单相等温流动特性及单相传热特性并未偏离常规尺度通道内的相关规律,采用经典理论解或关系式能获得较好的预测结果。
简析椭圆管板翅式换热器的优越性
在现代科学的许多领域,换热器是不可缺少的重要设备。随着人们对节能问题的日益重视,新型强化传热技术的应用和高效换热器的研制也变得越来越重要。椭圆管式换热器因为其低阻特性,近年来受到越来越多的关注。通过应用萘升华传质/传热比拟技术,在雷诺数为500~3500范围内,对三排椭圆管光板换热板芯进行了平均传质/传热实验研究,在不同雷诺数下对三排错排椭圆管换热板芯进行了光板与加设三角小翼式cfu和cfd涡产生器的局部传质/传热实验研究,并在此基础上分析对比了两种不同位置涡产生器条件下的强化传热效果。
波纹管管内降膜流动与传热特性的研究
应用cfd软件模拟分析流体在竖波纹管和竖直圆管内的降膜流动情况,采用立式蒸发式冷凝器试验平台,在不同喷淋密度下,测量温度和流量等参数,计算波纹管管内各相间传热传质系数,并与相同参数(流速、温度)条件下圆管管内传热传质系数进行比较。模拟结果表明,在相同的喷淋密度下,波纹管竖管内水膜分布较圆管均匀;试验结果表明,随着喷淋密度在一定范围内增加,水膜传热系数、空气-水当量传热系数、总传热传质系数均增大,且波纹管的传热性能明显优于圆管。
翅片椭圆管簇换热器在新风机组中的应用
指出了目前新风机组中使用板形翅片圆管簇换热器的缺陷,介绍了板形翅片椭圆管簇换热器的优点及计算方法,评价了带有翅片椭圆管簇换热器的新风机组的应用前景。
梯形硅基微通道热沉流体流动与传热特性研究
以去离子水为流动工质,对梯形截面的硅基微通道热沉进行了流体流动与传热的实验研究.通过测量流体的流量、进出口压降与温度、热沉底面加热膜温度,获得了梯形硅基微通道热沉在不同体积流量、不同加热功率条件下流体流动与传热特性参数.实验得出,梯形微通道的流体传热特性值与经验公式预测值相比存在明显的差异,梯形微通道角区对流体流动与传热有重要影响.最后,在实验基础上根据经验公式修正得出层流条件下的梯形硅基微通道的对流换热关联式.
内螺纹管内流动传热特性研究进展
内螺纹管作为一种高效的节能元件已在动力、航天、电子等领域广泛应用,为进一步促进内螺纹强化传热技术研发,对近30年来内螺纹管内流动传热研究进行了综述,内容涉及内螺纹管内流动传热机理、传热规律、传热恶化及预报等.
带钢条缝喷气冷却整场流动和传热特性的数值模拟
以某带钢生产线为参考,以空气为介质对条缝式喷嘴进行研究。通过数值模拟研究整个条缝式喷气冷却器的流动特性、喷射冷却介质与带钢表面的传热特性;以及风箱的风量变化与风箱内压差的关系,结果表明,在此模型下冷却器内的流体流动均匀,钢板表面也冷却均匀,满足工艺要求;此外风箱内压差随风量基本呈直线递增趋势。
风冷翅片管换热器传热特性研究
风冷翅片管换热器传热特性研究——以铜铝复合翅片管为研究对象,结合翅片管换热器传热性能分析,给出其传热过程的物理模型。通过流固界面传热耦合,利用计算流体力学(cfd)软件进行模拟,对翅片管在不同风速、风温下的翅片管换热过程中温度场的分布进行数值模拟...
螺旋扭曲椭圆管换热器壳程数值模拟
以水为介质,采用k-ε模型,用数值模拟方法研究了5种不同结构的螺旋扭曲椭圆管换热器的管外壳程传热与流阻性能,并和采用椭圆管作为换热部件的换热器进行了比较。研究结果表明,螺旋扭曲椭圆管换热器壳程有较好的强化换热特性,螺旋扭曲椭圆管的几何尺寸和流体流动速度对壳程传热与流阻性能有重要影响。通过数值模拟所获得的规律为螺旋扭曲椭圆管换热器的设计研发提供了参考。
内压作用下椭圆管道应力及极限载荷数值分析
采用有限元方法分析含椭圆度的管道在内压作用下的应力分布和塑性极限载荷,考察不同椭圆度、壁厚以及管径条件下,管道应力分布和极限载荷值的变化。结果表明,含椭圆度管道的最大应力随椭圆度的增大而迅速增大,管道极限载荷值随椭圆度增大而线性减小,椭圆度、壁厚及管径对管道的安全性有很大影响。
平行平板通道内置螺旋线圈流动传热特性
通过实验与三维数值模拟相结合的方法,对内置螺旋线圈平行平板通道的流动及传热特性进行了研究,发现相对于无扰流填充物的平板通道,螺旋线圈的应用能够显著地强化传热,相同re数下nu数增幅为29%~141%,相应地阻力系数增幅为26%~175%。数值模拟的结果显示,流体受螺旋线圈的诱导可产生多纵向涡流动,增强了速度在垂直于壁面方向的分量,同时导致温度场发生明显改变,使得速度场与温度梯度场的协同性能得到提升,从而强化了传热。在700<re<7500的范围内,通过对流动换热综合性能参数的比较发现,在re数较小时,强化传热后换热效果的提升要大于流动阻力的增加,而在re数较高时则相反。
矩形截面螺旋通道内弹状流的流动特性
对水平放置矩形截面螺旋通道内弹状流的流动特性进行了实验研究。通过实验获得了不同周角下的气弹演变过程和局部流动特征,结果表明,其流动特性会随着螺旋周角位置的变化而变化。根据实验数据分析发现,同一工况下,不同转角气弹的运动速度、频率和长度分布不尽相同。重力和离心力的相对大小决定着内外壁面液膜的厚度,给出了同一条件下,不同时刻的液膜厚度的演变过程。最后对下降液膜的运动速度展开了分析研究,在螺旋上升过程中,液膜下降速度逐渐减小,在螺旋下降段,液膜速度明显增大。
垂直上升内螺纹管流动传热特性研究
通过对比不同结构尺寸的垂直上升内螺纹管在亚临界及超临界压力下的传热系数计算关联式,结果表明:传热系数随着质量流量的增大、压力及热负荷的减小而增大;换热系数峰值在两相沸腾区;在超临界压力区,由于水在拟临界附近变化剧烈,在拟临界焓值区传热系数有最大值。内螺纹管结构参数对传热特性的影响与无因次数n有密切关系。
垂直上升内螺纹管内流动沸腾传热特性
在压力9~22mpa,质量流速450~2000kg·m?2·s?1,内壁热负荷200~700kw·m?2的参数范围内,试验研究了用于1000mw超超临界锅炉??28.6mm×5.8mm垂直上升内螺纹水冷壁管内汽水流动沸腾传热。研究表明:内螺纹管内壁螺纹的漩流作用可抑制偏离核态沸腾(dnb)传热恶化,内螺纹管在高干度区发生蒸干型(do)传热恶化。增大质量流速可推迟壁温飞升,壁温飞升幅度随质量流速增大而降低。热负荷越大管壁温越高,随热负荷增大管壁壁温飞升提前,且传热恶化后壁温飞升值增大。随着压力增加,壁温飞升发生干度值减小。内螺纹管汽水流动沸腾传热系数呈?形分布,传热系数峰值出现在汽水沸腾区。文中还给出了亚临界压力区内螺纹管单相区和汽水沸腾区的传热系数试验关联式。
颗粒物在矩形管道内流动的PIV实验研究
对水平管道内颗粒物运动规律进行研究。应用粒子图像测速(piv)技术,在不同的气体流量下,对矩形管道在两种不同结构下的气固两相流的流动情况进行了测量,得到了平直通道和带肋通道中气体及固体颗粒的时均速度场,并分析比较了管道结构及气体流量对速度和粒子沉积的影响,发现加肋有助于粒子的沉积,且使通道内流动状态发生了较大改变。对深入了解管道内气固两相流动状况及数值模拟结果的评价提供了参考。
电站间冷系统空冷散热器翅片管束流动传热性能的数值研究
空冷散热器为电站间接空冷系统的主要设备,研究空冷散热器翅片管束的流动传热特性,对于电站间冷系统的优化设计与高效运行具有重要意义。对间接空冷系统空冷散热器常用翅片管束流动传热性能进行了数值模拟研究,通过计算获得了空冷散热器冷却空气流动阻力和平均对流换热系数随迎面风速的变化规律,拟合得到了摩擦因子与努赛尔特数随雷诺数的变化关系。利用对流换热的综合性能评价标准(performanceevaluationcriteria,pec),即nu/f1/3,对6种翅片管束的流动传热性能进行了比较。结果表明,随迎面风速增加,空气对流换热增强,压降增加,翅片管的对流换热系数随之升高,摩擦因子降低,但是换热系数的增加幅度小于压降的增加幅度。forgo型翅片管束综合流动传热性能优于椭圆型管束。本文研究结果为电站间冷系统空冷散热器的选型和优化设计提供了一定的理论依据。
文辑推荐
知识推荐
百科推荐
职位:二级建造师项目经理(建筑专业)
擅长专业:土建 安装 装饰 市政 园林