GM(1,1)模型应用于建筑物沉降监测预计中的方法
为了更加准确地预测高层建筑物沉降趋势,利用Matlab软件,实现灰色系统理论GM(1,1)模型的参数估计、检验、数据拟合及预测。首先对原始数据进行整理和处理,经过累加生成和相关生成逐步使灰色量白化,使之呈现出一定的规律性,从而建立相应于微分方程解的动态模型并作出预报,通过残差检验、关联度检验、后验差检验对所建立的灰色GM模型进行评价;经试验数据检验,所建立系统精度可靠,灰色预测模型从理论上预判高层建筑沉降趋势,对施工及监测具有指导意义。
GM(1,1)模型在建筑物沉降监测中应用
结合某建筑物沉降监测数据,运用灰色预测gm(1,1)模型,探讨该建筑物沉降的动态变化规律,为其安全性诊断提供必要的信息。与实测结果对比表明,gm(1,1)模型对其沉降趋势符合度较高,验证了灰色gm(1,1)预测方法在建筑物沉降监测中应用的可行性和可靠性。
GM(1,1)模型在建筑物沉降监测中的应用
建筑物的变形是多方面原因共同作用的结果,研究其变化规律,合理预测建筑物的变形趋势,一直是变形监测研究的热点问题。以黑龙江省哈尔滨市某建筑物为例,采用gm(1,1)模型对沉降监测数据进行预测分析,结果显示实测值与预测值吻合较好,充分证实该模型对建筑物的变形预测具有可行性,是一种较好的方法。
GM(1,1)模型在高层建筑物沉降监测中的应用
详细地介绍了gm(1,1)模型及模型精度评定,利用gm(1,1)灰色模型和回归模型对宜昌均瑶国际广场的沉降进行预测,将预测结果进行对比,分析表明gm(1,1)灰色模型能较好地预测该建筑物的沉降趋势。
优化的非等距 GM(1,1)模型在高层建筑物沉降监测中的应用
由于影响高层建筑物沉降的因素较多,并且在实际工作中变形监测数据存在非等距的情况,通过传统非等距gm(1,1)预测模型的建模原理分析其预测精度偏低,指出初值选择和背景值构建是影响非等距gm(1,1)模型预测精度的关键因素。在此基础上,提出利用最小二乘原理选择初值和运用newton-cotes公式优化背景值,并结合工程实例进行验证。结果表明优化后的非等距gm(1,1)模型在高层建筑物沉降预测中的有效性。
灰色模型在建筑物沉降监测中的应用
简要介绍了灰色模型的基本原理及建模方法,并针对具体的工程实例,通过建立灰色预报模型来预报未来几天的沉降量。结果表明:灰色模型具有较高的预报精度,数据非常可靠,所以可以通过建立灰色模型的方法来了解建筑物短期内的沉降变化规律。
GM(1,1)模型在建筑物沉降分析中的应用
采用灰色理论中的gm(1,1)模型,对建筑物的沉降数据进行拟合,并以此模型进行预报。通过实例分析,gm(1,1)模型具有较高的拟合精度以及预报精度,能够准确预报建筑物未来沉降趋势,在确保建筑物安全方面,具有较高的实际指导意义。
建筑物沉降监测中的改进灰色模型
针对传统非等间距gm(1,1)模型在建筑物沉降监测中预测精度不够高的问题,提出了一种新的非等间距gm(1,1)建模方法。此法基于初始条件改进及把灰色微分方程的白化方程中的灰导数用离散形式进行表示的改进相结合、提高非等间距gm(1,1)模型的建模精度。结合桂林市某广场的集商用、住房于一体的高层建筑的沉降变形监测实例,将本模型的沉降预测的结果同文献中另一非等间距gm(1,1)改进方法进行对比分析和检验,充分验证了建筑物沉降变形分析预报中本模型方法的可行性和优越性,对进一步促进非等间距gm(1,1)模型在沉降变形预测中的应用起到了积极的作用。
Verhulst优化模型的建筑物沉降监测
针对经典verhulst模型背景值建模机理的不严密和初始值设定的不科学性,该文给出了灰导数改进模型及模型参数的最优估计式。采用原始数据一次累加与其拟合值的残差平方和最小作为约束准则,推导出虚拟初始值的计算公式,建立了无须设定初始值约束的优化模型。以南水北调工程沉降监测实例,比较了在3种背景值构造方法和两种初始值约束条件下的预测精度。结果表明,该文提出的初始值优化模型与灰导数法构造背景值,所得残差的平方和最小,从而验证了优化模型的可行性,为沉降监测中长期预报建模提供了合理的解决方案。
GM(1,1)、GM(1,N)联合模型在建筑物沉降预测中的应用
鉴于gm(1,n)模型预测精度高及gm(1,1)所需统计数据数量少的优点,通过自相关理论,把gm(1,1)和gm(1,n)两者有机结合形成一个联合模型,以进一步提高灰色模型的预测精度。该文在沉降资料的基础上,利用该联合模型对南京一泵站的沉降进行了分析预报,其结果与回归模型和gm(1,1)模型进行了比较,最后得出了基于自相关理论的gm(1,1)、gm(1,n)联合预测模型,其精度可靠,可信度高,预报结果也与实际情况相吻合,从而证明了该方法在实际工程中的可行性。
GM(1,1)加权模型预测建筑物沉降的研讨
GM(1,1)加权模型预测建筑物沉降的研讨
GM(1,1)加权模型预测建筑物沉降的研讨
GM(1,1)加权模型预测建筑物沉降的研讨
灰色预测模型在建筑物沉降监测中的应用
建筑施工中,沉降观测是监测建筑物是否安全的重要环节。为此,将灰色系统理论应用于建筑物沉降变形数据分析,结合实例,验证了灰色gm(1,1)预测方法在建筑物沉降监测中应用的可行性和可靠性。
稳健灰色模型在建筑物沉降监测中的应用
该文提出了稳健灰色模型,并将其应用于某建筑物沉降的预测。结果表明,稳健gm(1,1)模型比常规gm(1,1)模型具有更好的抗干扰性能和受异常点影响小的优点,更具有预测应用价值。同时还编写了计算机程序对灰色预测过程进行电脑处理,大大减少了工作量。
Verhulst模型优化及其在建筑物沉降监测中的应用
针对经典verhulst模型背景值建模机理的不严密和初始值设定的不科学性,给出了灰导数改进模型及模型参数的最优估计式。采用原始数据一次累加与其拟合值的残差平方和最小作为约束准则,推导出虚拟初始值的计算公式,建立了无需设定初始值约束的优化模型,并以南水北调工程沉降监测实例验证了模型预测精度,为沉降监测中长期预报建模提供了合理的解决方案。
时间序列模型在建筑物沉降监测中的应用
简要介绍了时间序列分析的基本原理及方法、数据识别、建模和预报及其在变形监测数据处理中的应用。结合华景新城二区六期20号楼的一个监测点(j101)连续20期的观测数据进行了计算分析,实际工程应用表明,该模型能准确监测和预报建筑的变形,具有很强的实际应用价值。
Logistic模型在高层建筑物沉降监测中的应用
介绍了logistic增长曲线模型,通过实测数据建立沉降预测模型,拟合出s-t曲线,用平均绝对百分误差(mape)来评价预测模型拟合的精度,发现logistic模型属于高精度拟合.将预测数据与实际观测数据进行对比分析,预测精度较高.结果表明该模型可用于高层建筑物的沉降预测情况.
稳健灰色模型在建筑物沉降监测中的应用
结合稳健估计理论和灰色模型理论,提出了稳健灰色gm(1,1)模型。并以泰安市中医医院大楼为例,预报结果同常规的灰色gm(1,1)预报模型相比较,表明该模型具有较强的抗粗差的能力,在实际工程中得到了很好的应用。
建筑物地基沉降的灰色模型GM(1,1)预测法
建筑物地基沉降的灰色模型gm(1,1)预测法——文章主要运用灰色理论建立基于实际观测数据的沉降预测模型gm(1,1).并通过其与另外2个工程中常用到的模型在同一实际工程的沉降预测值和实际观测结果的比较。证明gm(1,1)模型具有较好的预测结粜。可用于工程实...
非等间距GM(1,1)模型在建筑物沉降预测中的应用
本论文先简单介绍建筑物沉降观测的基本内容和预测方法,再重点介绍非等间距灰色理论模型的基本原理、模型及其应用,采用了一个实例预测分析了其模型gm(1,1)在建筑物沉降预报中的结果,对比多项式拟合方法预测结果,验证了非等间距灰色模型对建筑物沉降预测中的有效性。
新陈代谢GM(1,1)模型在建筑物沉降预测中的应用
利用matlab7.0软件对原始数据进行等间距处理后,用一次累加数列与原始数列构建微分模型,通过不断去掉旧数据加入新数据,以工程数学为基础,运用灰色理论构建新陈代谢gm(1,1)模型。并以工程实例进行模拟和预测效果检验,将普通gm(1,1)模型和新信息gm(1,1)模型预测效果进行比较,计算和对比结果表明,新陈代谢gm(1,1)模型精度明显高于其它模型,预测效果大大提高。
GM(1,1)模型在巨型溶洞超厚回填路基沉降监测中的应用
为验证gm(1,1)模型在黔张常铁路高山隧道巨型溶洞超厚回填路基沉降监测和预报项目中的适用性,根据现场实际情况布设沉降监测基准网和监测网并进行数据采集,选取某一断面的3个监测点在某一时期内的9期监测数据进行处理与分析,根据累计沉降量数据的变化关系建立gm(1,1)模型,该模型的后验差值比c和p均达到ⅰ级拟合精度。利用gm(1,1)模型对该段路基的累计沉降量和沉降趋势进行预测,预测结果与该巨型溶洞超厚回填路基的实际沉降情况吻合较好,预测结果可供后续施工组织参考。
GM(1,1)模型在高铁软土路基沉降监测中的应用
依托哈齐铁路客运专线沉降观测项目,利用灰色模型gm(1,1)对软土路基沉降进行定量分析预测,探讨了该沉降过程的动态变化规律。与实测数据对比表明,灰色模型gm(1,1)对该沉降趋势的符合度较高,精度能够满足要求。
Kalman滤波在建筑物沉降监测预报中的应用
文中研究了kalman滤波方法在建筑物沉降监测数据处理中的应用,并利用模拟和实际观测数据,分别采用了标准kalman滤波,抗差自适应kalman滤波,双自适应因子滤波三种方案进行了滤波处理,比较和分析了各种方案的优点和不足,以指导实践应用。
灰关联GM(1,N)模型在建筑物沉降分析中的应用
针对建筑物沉降变形中各监测点相互关联、相互影响的情形,可将灰色系统理论中的gm(1,n)模型引入到建筑物沉降分析中。本文利用灰度关联方法确定相关因子的关联度,建立gm(1,n)模型,并与回归分析、gm(1,1)模型比较。通过工程实例,得出灰关联gm(1,n)模型预测精度明显高于另外两种模型,验证了该模型在进行建筑物沉降分析预测中应用的可行性。
文辑推荐
知识推荐
百科推荐
职位:道路工程师
擅长专业:土建 安装 装饰 市政 园林