下拉法

下拉法通常叫做溢流下拉法,下拉法是生产超薄电子玻璃是超薄电子玻璃制造中的热点技术,也是制约国内超薄电子玻璃产业发展的瓶颈。

下拉法基本信息

中文名 下拉法 又    称 溢流下拉法
属    性 超薄玻璃生产工艺 领    域 玻璃工业
提    出 美国康宁公司

溢流下拉成形法其主要特点是:该法所生产玻璃带两外表面除了与空气接触外,不与任何固体或液体接触,即不用槽子砖、引砖、转向辊,也不用锡槽。在成形过程中,玻璃液流入方向与其所形成玻璃带的两面相平行,这就有利于在玻璃带的两侧安装温度调节装置,以利于消除玻璃板面的不平整度,提高玻璃板面质量 。

下拉法造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
扩角度下拉训练器 3.0mm 查看价格 查看价格

达创

13% 河北达创体育器材有限公司
泰微型断路器 FTM10-32/16A 查看价格 查看价格

13% 江苏法泰电器有限公司
泰微型断路器 FTM8-63N 3P 20A 查看价格 查看价格

13% 江苏法泰电器有限公司
下拉训练器 品种:下拉训练器;型号:SH-5001;系列:50系列;规格:1390×1572×2010mm 查看价格 查看价格

舒华

13% 舒华健身养身器材(厦禾路店)
下拉训练器 规格:长×宽×高:160×75×165cm 品种:下拉训练器 材质:烤漆防锈处理 查看价格 查看价格

鑫宁健

13% 南宁市泰禄体育设施有限公司
下拉训练器 品种:下拉训练器;型号:SH-5001;系列:50系列;规格:1390×1572×2010mm 查看价格 查看价格

舒华

13% 南昌市舒华健康产业有限公司
下拉训练器 规格:长×宽×高:1600×750×1650mm 查看价格 查看价格

沛迪

13% 桂林市沛迪园林景观户外产品公司
下拉训练器 TB-11121 查看价格 查看价格

澳瑞特

13% 澳瑞特健身器械北京分公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
挤压顶管设备 管径1650 查看价格 查看价格

台班 汕头市2012年4季度信息价
挤压顶管设备 管径2400 查看价格 查看价格

台班 汕头市2012年4季度信息价
挤压顶管设备 管径1200 查看价格 查看价格

台班 汕头市2012年3季度信息价
挤压顶管设备 管径1400 查看价格 查看价格

台班 汕头市2012年3季度信息价
挤压顶管设备 管径2000 查看价格 查看价格

台班 汕头市2012年3季度信息价
挤压顶管设备 管径2000 查看价格 查看价格

台班 汕头市2012年2季度信息价
挤压顶管设备 管径1200 查看价格 查看价格

台班 汕头市2012年1季度信息价
挤压顶管设备 管径1400 查看价格 查看价格

台班 汕头市2012年1季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
下拉声像扬声器 下拉声像扬声器|1台 1 查看价格 深圳市优尚诚品科技有限公司 四川  成都市 2018-11-07
穴模后张 穴模 后张用|60000套 3 查看价格 邯郸市冀鼎紧固件制造有限公司 湖北  荆州市 2020-06-19
高位下拉 BU-012|1台 1 查看价格 山东宝德龙健身器材有限公司 贵州  贵阳市 2022-08-18
干振碎石桩 干振碎石桩|1m 1 查看价格 安瑞通(北京)建筑加固工程有限公司 广东  广州市 2015-07-27
下拉训练器 向下调整摆臂,使人能坐到 座板,腿部顶住横管,发力向下拉动的同时两肘努力接近身体两侧,双手接近上胸位置 后,维持数秒,再缓慢返回起始位置; 5、 主要功能:增强上肢及背部肌肉力量,提高肘关节稳定性.对|2件 1 查看价格 武汉金色乐圆器材有限公司 全国   2022-03-10
下拉 E-HALF系列 DELB.16P|2678套 1 查看价格 黑龙江圣之奥家具有限公司 黑龙江  哈尔滨市 2015-10-02
下拉训练器 TB-11121|8337套 1 查看价格 澳瑞特健身器械北京分公司 北京  北京市 2015-08-10
下拉 E-HALF系列 DELB.18Y|6917套 1 查看价格 黑龙江圣之奥家具有限公司 黑龙江  哈尔滨市 2015-07-14

从技术功效上来看,研究相对集中在通过改善“溢流槽工艺”“溢流槽结构”和“牵引”来提高玻璃质量的均匀性,通过改善“溢流槽材料”来延长溢流槽寿命。具体如下:

(1)在改进溢流槽结构方面:重点是改进锆石耐火材料的烧结添加剂及锆石颗粒粒度分布;新的关注点一是磷钇矿耐火材料,二是改进氧化铝材料来取代锆石材料作为溢流槽的主体材料来制造高碱玻璃。

(2)在改进溢流槽结构方面:难点是如何提高玻璃尺寸应力均匀性;关键的改进部位是溢流槽根部;新的技术思路是利用叠层溢流槽生产表面强化玻璃基板。

(3)在改进溢流槽工艺控制方面:难点仍是如何提高玻璃尺寸应力均匀性;关键的改进部位也仍然集中在溢流槽根部;改进的重心在于改进温度场控制。

(4)在改进牵引工艺方面:重点是改进牵引过程中温度场控制;新的技术思路是通过牵引工艺的改进来形成并稳定在宽度方向上具有一定弯曲度的玻璃带;有效的技术手段是在牵引过程中采用合适的实时在线监测及反馈控制手段 。

如《溢流下拉法原理示意图》所示:熔化好的玻璃液G由供料部进入溢流道12向外溢流,然后顺着长溢流槽10的表面向下流动,溢流槽的下部是一个楔形体,玻璃液顺两楔形表面下流,最后在楔形体的底边14处汇合形成一条玻璃带S,玻璃带S经退火后,生产出优质平板玻璃 。

下拉法常见问题

  • 谁能介绍下拉铆螺母使用方法?

    1.先查看枪嘴螺杆是不是装配正确,按铆螺母尺度挑选相应的枪头和拉铆螺栓,各衔接部件衔接是否牢靠。            ...

  • 下拉式纱窗使用方法是什么?

    外面   四个角上         个有一个小盖        &nb...

  • 哪位能说下拉床价格

    你好,据我了解: 拉床价格一般在20000元以上。 拉床是金属切削机床,用来加工孔眼或键槽。加工时,一般工件不动,拉刀做直线运动切削。 价格来源于网络,仅供参考!

下拉法文献

软土地基下拉森钢板桩的应用 软土地基下拉森钢板桩的应用

格式:pdf

大小:448KB

页数: 4页

评分: 4.5

拉森钢板桩是一种可重复利用的施工设备,因其具有高强度、止水效果好、施工效率高,且对周围环境影响较小等特点,在软土地基施工中占有很大优势。文章结合工程实例,论述了拉森钢板桩在软土地基下基坑支护中的应用,以及拉森钢板桩在工程中的设计计算方法,详细介绍了拉森钢板桩的施工工艺技术及施工中可能遇到的问题及处理。

立即下载
车轮直径变化对下拉杆销安装位置及闸瓦位... 车轮直径变化对下拉杆销安装位置及闸瓦位...

格式:pdf

大小:448KB

页数: 未知

评分: 4.8

车轮直径变化对下拉杆销安装位置及闸瓦位...

立即下载

百度一下上拉电阻与下拉电阻,一堆一堆的解释就出来了,不过,好像没有一个解释的通熟易懂的,可能是写解释的人水平太高了,说的话小白听不懂。

我来给你来点通熟易懂的解释吧。

上拉电阻与下拉电阻用在什么场合?

答:用在数字电路中,存在高低电平的场合。

上拉电阻与下拉电阻怎么接线?

上拉电阻:电阻一端接VCC,一端接逻辑电平接入引脚(如单片机引脚)

下拉电阻:电阻一端接GND,一端接逻辑电平接入引脚(如单片机引脚)

如上图,R13和R14,一端接到了3.3V,一端通过J17连接到单片机引脚,这两个电阻就是上拉电阻。

如上图,R18的一端连接到了GND,一端连接到了单片机的引脚(只不过是串了一个电阻后连接到了单片机引脚)。所以这个就是下拉电阻。

上拉电阻和下拉电阻有什么用?

1.提高驱动能力:

例如,用单片机输出高电平,但由于后续电路的影响,输出的高电平不高,就是达不到VCC,影响电路工作。所以要接上拉电阻。下拉电阻情况相反,让单片机引脚输出低电平,结果由于后续电路影响输出的低电平达不到GND,所以接个下拉电阻。

2.在单片机引脚电平不定的时候,让后面有一个稳定的电平:

例如上面接下拉电阻的情况下,在单片机刚上电的时候,电平是不定的,还有就是如果你连接的单片机在上电以后,单片机引脚是输入引脚而不是输出引脚,那这时候的单片机电平也是不定的,R18的作用就是如果前面的单片机引脚电平不定的话,强制让电平保持在低电平。

再这么解释一下吧,如果IE_DATA那个地方,不连接任何引脚,那么由于R18的下拉作用,IE_DATA就是低电平,所以三极管就不会导通。

不知道你清楚了没有?

一、定义:

1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理

2、上拉是对器件注入电流,下拉是输出电流

3、弱强只是上拉电阻的阻值不同,没有什么严格区分

4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。

二、拉电阻作用:

1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。

2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!

3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,其作用主要是确保某端口常态时有确定电平:用法示例:当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入。

4、上拉电阻是用来解决总线驱动能力不足时提供电流的。一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流。

5、接电阻就是为了防止输入端悬空。

6、减弱外部电流对芯片产生的干扰。

7、保护cmos内的保护二极管,一般电流不大于10mA。

8、通过上拉或下拉来增加或减小驱动电流。

9、改变电平的电位,常用在TTL-CMOS匹配。

10、在引脚悬空时有确定的状态。

11、增加高电平输出时的驱动能力。

12、为OC门提供电流。

三、上拉电阻应用原则:

1、当TTL电路驱动COMS电路时,若TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平值。注:此时上拉电阻连接的电压值应不低于CMOS电路的最低高电压,同时又要考虑TTL电路方电流(如某端口最大输入或输出电流)的影响。

2、OC门电路必须加上拉电阻,才能使用。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生

降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰

能力。

6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

8、在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。

四、上拉电阻阻值选择原则:

1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理。

对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:

1、驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,

但功耗越大,设计是应注意两者之间的均衡。

2、下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻

应适当选择以能够向下级电路提供足够的电流。

3、高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能

输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。

4、频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。

在集成电路中,吸电流、拉电流输出和灌电流输出是一个很重要的概念。拉电流:拉即泄,主动输出电流,是从输出口输出电流。

关于电阻的参数不能一概而定,要看电路其他参数而定,比如通常用在输入脚上的上拉电阻如果是为了抬高峰峰值,就要参考该引脚的内阻来定电阻值的!

1、一般LED的电流有几个mA就够了,最大不超过20mA,根据这个你就应该可以算出上拉电阻值来了。(5-0.7)/20mA=200ohm,差不多吧,保险起见考虑到功耗问题就用1~2k左右的电阻较为合适

以上4图表示的是上拉电阻从220欧到5.1K欧的LED亮度变化,当然实际还是有出入的,我们实验室开发板10K的电阻依然把LED点的很亮~(当然根据我们的计算电阻最小不要小于200欧姆,否则电流太大)

2、对于驱动光耦合器,如果是高电位有效,即耦合器输入端接端口和地之间,那么和LED的情况是一样的;如果是低电位有效,即耦合器输入端接端口和VCC之间,那么除了要串接一个1~4.7k之间的电阻以外,同时上拉电阻的阻值就可以用的特别大,用100k~500K之间的都行,当然用10K的也可以,但是考虑到省电问题,没有必要用那么小的。

3、对于驱动晶体管,又分为PNP和NPN管两种情况:

a、对于NPN:毫无疑问NPN管是高电平有效的,因此上拉电阻的阻值用2K~20K之间的。具体的大小还要看晶体管的集电极接的是什么负载,对于LED类负载,由于发管电流很小,因此上拉电阻的阻值可以用20k的,但是对于管子的集电极为继电器负载时,由于集电极电流大,因此上拉电阻的阻值最好不要大于4.7K,有时候甚至用2K的。

b、对于PNP管,毫无疑问PNP管是低电平有效的,因此上拉电阻的阻值用100K以上的就行了,且管子的基极必须串接一个1~10K的电阻,阻值的大小要看管子集电极的负载是什么,对于LED类负载,由于发光电流很小,因此基极串接的电阻的阻值可以用20k的,但是对于管子的集电极为继电器负载时,由于集电极电流大,因此基极电阻的阻值最好不要大于4.7K。

4、对于驱动TTL集成电路,上拉电阻的阻值要用1~10K之间的,有时候电阻太大的话是拉不起来的,因此用的阻值较小。但是对于CMOS集成电路,上拉电阻的阻值就可以用的很大,一般不小于20K,通常用100K的,实际上对于CMOS电路,上拉电阻的阻值用1M的也是可以的,但是要注意上拉电阻的阻值太大的时候,容易产生干扰,尤其是线路板的线条很长的时候,这种干扰更严重,这种情况下上拉电阻不宜过大,一般要小于100K,有时候甚至小于10K。

5、关于I2C的上拉电阻:因为I2C接口的输出端是漏极开路或集电极开路,所以必须在接口外接上拉。上拉电阻的取值和I2C总线的频率有关,工作在standard mode时,其典型值为10K。在FAST mode时,为减少时钟上升时间,满足上升时间的要求,一般为1K。电阻的大小对时序有一定影响,对信号的上升时间和下降时间也有影响。总之一般情况下电压在5V时选4.7K左右,3.3V在3.3K左右.这样可加大驱动能力和加速边沿的翻转

I2C上拉电阻确定有一个计算公式:

Rmin={Vdd(min)-o.4V}/3mA

Rmax=(T/0.874) *c, T=1us 100KHz, T=0.3us 400KHz

C是Bus capacitance

五、下面通过场效应管的漏极开路门电路的例子简单说明一下上拉电阻:

TTL电平标准:

输出 L: <0.8V ; H:>2.4V。

输入 L: <1.2V ; H:>2.0V。

CMOS电平标准:

输出 L: <0.1*Vcc ; H:>0.9*Vcc。

输入 L: <0.3*Vcc ; H:>0.7*Vcc。

注:管子导通或截止可以理解为单片机的软件对端口置1或0.

(1)如果没有上拉电阻(10k),将5V电源直接与场效应管相连。

当管子导通时,管子等效一电阻,大小为1k左右,因此5v电压全部加在此等效电阻上,输出端Vout=5v。

当管子截止时,管子等效电阻很高,可以理解为无穷大,因此5v的电压也全部加在此等效电阻上,Vout=5v。在这两种情况下,输出都为高电平,没有低电平。

(2)如果有上拉电阻(10k),将5v电源通过此上拉电阻与与场效应管相连。

当管子导通时,管子等效一电阻,大小为1k左右,与上拉电阻串联,输出端电压为加在此等效电阻上的电压,其大小为Vout = 5v * 管子等效电阻/(上拉电阻+管子等效电阻)=5v * 1/(10+1)=低电平。

当管子截止时,管子等效电阻很高,可以理解为无穷大,其与上拉电阻串联,输出端电压为加在此等效电阻上的电压,其大小为Vout = 5v * 管子等效电阻/(上拉电阻+管子等效电阻)=5v*无穷大/(无穷大+1)=高电平。

在前极输出高电平时,Vout输出电流,U为高电平。有两种情况:

A、当I0 >= I1 + I2

这种情况下,RL1和RL2两个负载不会通过R取电流,因此对R阻值大小要求不高,通常4.7 KΩ<R<20KΩ即可。此时R的主要作用是增加信号可靠性,当Vout连线松动或脱落时,抑制电路产生鞭状天线效应吸收干扰。

B、当I0 < I1 + I2

I0 +I= I1 + I2

U=VCC-IR

U>=VHmin

由以上三式计算得出,R<=(VCC- VHmin)/I

其中,I0、I1、I2都是可以从datasheet查到的,I就可以求出来,VHmin也是可以查到的。

当前极Vout输出低电平时,各管脚均为灌电流,则:

I’= I1’ + I2’ +I0’

U’ =VCC-I’ R

U’ <=VLmax

以上三式可以得出:R>=(VCC- VLmax)/I’

由以上二式计算出R的上限值和下限值,从中取一个较靠近中间状态的值即可。注意,如果负载的个数大小不定的话,要按照最坏的情况计算,上限值要按负载最多的时候计算,下限值要按负载最少的计算。

另一种选择方式是基于功耗的考虑。根据电路实际应用时,输出信号状态的频率或时间比选择。若信号Vout长期处于低电平,宜选择下拉电阻;若长期处于高电平,宜选择上拉电阻。为的是静态电流小。

六、灌电流

灌电流:灌即充,被动输入电流,是从输出端口流入吸电流:

吸则是主动吸入电流,是从输入端口流入吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流,区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。灌入电流是被动的,从输出端流入的叫灌入电流。拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流,它们实际就是输入、输出电流能力。

吸收电流是对输入端(输入端吸入)而言的;

而拉电流(输出端流出)和灌电流(输出端被灌入)是相对输出端而言的。

1)防止三极管受噪声信号的影响而产生误动作,使晶体管截止更可靠!三极管的基极不能出现悬空,当输入信号不确定时(如输入信号为高阻态时),加下拉电阻,就能使有效接地。

特别是GPIO连接此基极的时候,一般在GPIO所在IC刚刚上电初始化的时候,此GPIO的内部也处于一种上电状态,很不稳定,容易产生噪声,引起误动作!加此电阻,可消除此影响(如果出现一尖脉冲电平,由于时间比较短,所以这个电压很容易被电阻拉低;如果高电平的时间比较长,那就不能拉低了,也就是正常高电平时没有影响)!但是电阻不能过小,影响泄漏电流!(过小则会有较大的电流由电阻流入地)

2)当三极管开关作用时,ON和OFF时间越短越好,为了防止在OFF时,因晶体管中的残留电荷引起的时间滞后,在B,E之间加一个R起到放电作用。高频,深饱和时特别要注意。(次要)

3 )三极管基级加电阻主要是为了设置一个偏置电压,这样就不会出现信号的失真(这在输入信号有交流时极其重要:如当温度上升时,Ic将增大,导致Ie也会增大,那么在Re上的压降也增大,而Vbe=Vb-IeRe,而Vb此时基本上被下拉电阻保持住,所以使Vbe减小。当然这个减小对0.7v来说是很小的,是从微观上去分析的。Vbe的减小,使Ib减小,结果牵制了Ic的增加,从而使Ic基本恒定。这也是反馈控制的原理)。

而且同时还是为了防止输入电流过大,加个电阻可以分一部分电流,这样就不会让大电流直接流入三极管而损坏其.至于为了放电,一般是在MOS管中才用,三极管这个问题不大.

4)如果三极管不接下拉电阻,就不能设定偏置电压,这样会产生输入信号的交越失真,并且输 入电流过大的时候会导致大电流直接流入三极管而损坏其.三极管我们分析的时候有时候总是认为它的内部是有二极管的效应的,但这样是错误的认识,应该更正.而MOS管同样需要一个偏制电压,而下拉电阻可以起到这样的作用,我们一般称之为GATE偏制.由于MOS管内部的三个级是彼此绝缘的,所以自然会有电容效应在,当信号消失的时候内部的等效电容可以通过下拉电阻进行放电.而且也是必须的,否则会逻辑出错.

接下拉电阻时还要注意:

1、下拉电阻阻值不能太大,不然会导致流入基级的电流太小.

2、如果是高速开关信号,尽量在下拉电阻上并连一个电容以提高高速性

下拉法相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏