隔膜式膨胀罐的缺陷

1.隔膜式膨胀罐壳体是直接与水接触的,壳内都喷涂防锈层。罐的接口与壳体之间焊接而成。在焊接的过程中,高温会将防锈涂层氧化。本来银白色的涂层,在焊接后呈现黑色。用手触摸可感觉有黑色小颗粒。这些看似微不足道的氧化点工作时长期与水接触,慢慢就会生锈并逐渐扩大,直到腐蚀整个罐体。为什么这种膨胀罐用一段时间后,倒出来来的水呈黄水也就不足为奇了。2.隔膜式膨胀罐的内膜是通过热轧的方式固定在膨胀罐的两个半壳的碳钢中间,这种工艺过程如果处理的不好,就会留下微小的气孔在内膜和碳钢之间,这些微小的气孔就会将预充的气体泄露出去,膨胀罐如果泄露气体,90%就是从这里泄露的。这种漏气的膨胀罐用一段时间如果不及时补充气体就不能起到定压卸荷作用。此外,由于膨胀罐罐壁厚度一般在1mm左右,接口直接与罐焊接在一起,这种联接方式可承受的扭力相当小。而安装罐时只能抱着壳体旋转,如果用力太大或过猛,就会将接口旋断。这种情况在空调生产过程中最为常见。

气囊式膨胀罐

气囊式膨胀罐就很好地克服了这些缺点。气囊式膨胀罐内部有一个整体的气囊,在工作时水只进入气囊内,不与壳体接触。接口处用法兰盘连接。这种结构就避免了焊接过程引起的生锈问题。另外,这种结构的膨胀罐的气囊可更换。同样,由于是法兰连接,故它的接口就可以承受很大的扭力,在安装过程中就不怕会扭断接口。

气囊式膨胀罐造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
膨胀罐 SNL800-1.0 不锈钢 查看价格 查看价格

13% 湖北永大换热设备有限公司
膨胀罐 SNL800-0.6 不锈钢 查看价格 查看价格

13% 湖北永大换热设备有限公司
隔膜压力膨胀罐 体容积0.5m3, 查看价格 查看价格

13% 皇明太阳能廊坊区域销售
膨胀罐 隔膜膨胀罐,容积300升. 查看价格 查看价格

瑞美

13% 瑞美中国热水器有限公司广州办事处
膨胀罐 25L/压力膨胀罐 查看价格 查看价格

13% 成都恒新源暖通工程有限公司
膨胀罐 2000L 碳钢 产品尺寸:Ф1100×2450mm 承压16bar 查看价格 查看价格

袁申

13% 上海袁申自控设备有限公司
膨胀罐 300L 碳钢 产品尺寸:Ф650×1300mm 承压16bar 查看价格 查看价格

袁申

13% 上海袁申自控设备有限公司
膨胀罐 100L 碳钢 产品尺寸:Ф450×840mm 承压16bar 查看价格 查看价格

袁申

13% 上海袁申自控设备有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
水成膜泡沫推车式灭火器 30L 查看价格 查看价格

湛江市2007年4季度信息价
水成膜泡沫推车式灭火器 30L 查看价格 查看价格

湛江市2008年2季度信息价
水成膜泡沫推车式灭火器 30L 查看价格 查看价格

湛江市2006年12月信息价
隐蔽喷头 ZSTDY16-68℃ 查看价格 查看价格

珠海市2022年10月信息价
内扣接口 KD65 查看价格 查看价格

珠海市2019年7月信息价
内扣接口 KD65 查看价格 查看价格

珠海市2019年6月信息价
内扣接口 KD65 查看价格 查看价格

珠海市2019年3月信息价
内扣接口 KD65 查看价格 查看价格

珠海市2018年6月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
膨胀罐 隔膜膨胀罐,容积300升.|5551台 4 查看价格 瑞美中国热水器有限公司广州办事处 广东  广州市 2015-06-16
气囊膨胀罐 500L|1台 1 查看价格 绍兴市上虞杰瑞节能设备有限公司 广东  佛山市 2019-03-06
膨胀罐 1、名称:膨胀罐2、型号、规格:500L 气襄耐高温型|5台 1 查看价格 广东纽恩泰新能源科技发展有限公司 全国   2019-09-29
膨胀罐 1、名称:膨胀罐2、规格:50L|1台 1 查看价格 绍兴市上虞杰瑞节能设备有限公司 全国   2022-09-01
隔膜膨胀罐 直径800mm|1套 1 查看价格 广州中开泵业有限公司 全国   2017-12-21
隔膜压力膨胀罐 直径 立式,有效容积L PN1.0MPa|1台 3 查看价格 广州市白云泵业集团有限公司 广西  南宁市 2022-10-18
定压膨胀罐 1.名称:定压膨胀罐2.型号:3000L|1台 1 查看价格 广州德清环保科技有限公司 广东  汕头市 2020-07-16
膨胀罐 日用水量30m3,需设置膨胀罐|1台 3 查看价格 广东瑞星新能源科技有限公司 广东   2022-05-20

气囊式膨胀罐的工作原理

有上面其结构可知:当膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。

膨胀罐应用于热力系统(锅炉、空调、热泵、热水器等)中,主要是用来吸收工作介质因温度变化增加的那部分体积;膨胀罐应用在供水系统上主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水,使供水系统主泵休眠从而减少用电,延长水泵使用寿命。

隔膜式膨胀罐与气囊式膨胀罐的对比常见问题

  • 膨胀罐用途

    膨胀罐的用途:常用于楼宇供水、中央空调等闭式水循环系统中,起到了平衡水量及压力的作用,避免安全阀频繁开启和自动补水阀频繁补水。 膨胀罐的工作原理:当外界有压力的水进入膨胀罐气囊内时,密封在罐内的气体被...

  • 膨胀罐的结构

    膨胀罐—由罐体、气囊、进/出水口及补气口四部份组成。罐体一般为碳钢材质,外面是防锈烤漆层;气囊为EPDM环保橡胶;气囊与罐体之间的预充气体出厂时已充好,无需自己加气。

  • 膨胀罐的原理

            一、膨胀罐的作用  膨胀罐用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因...

隔膜式膨胀罐与气囊式膨胀罐的对比文献

立式膨胀罐 立式膨胀罐

格式:jpg

大小:319KB

页数: 1页

评分: 3.9

膨胀罐:用于系统中起缓冲压力波动及部分给水的作用,在热力系统中主要是用来吸收工作介质因温度变化增加的那部分体积;在供水系统中主要用来吸收系统因阀门、水泵等开和关所引起的水锤冲击,以及夜间少量补水使供水系统主泵休眠从而减少用电,延长水泵使用寿命。

立即下载
膨胀罐讲稿 膨胀罐讲稿

格式:pdf

大小:319KB

页数: 13页

评分: 3

膨胀罐讲稿——膨胀罐是封闭式供暖系统里非常重要的元件。它的选型、预压、及安装并不难于理解,但遗憾的是在工程安装时经常被误解或忽略了。靠‘估计’或‘想象’得出的数据往往会给系统带来或大或小的问题。因此对于从事供暖系统设计或安装的专业人员,需要认...

立即下载

页岩气与深盆气、煤层气一样都属于“持续式”聚集的非常规天然气。

天然气在页岩中的生成、吸附与溶解逃离,具有与煤层气大致相同的机理过程。如图所示,通过生物作用或热成熟作用所产生的天然气首先满足有机质和岩石颗粒表面吸附的需要,此时所形成的页岩气主要以吸附状态赋存于页岩内部。当吸附气量与溶解的逃逸气量达到饱和时,富裕的页岩气解吸进入基质孔隙。随着天然气的大量生成,页岩内压力升高,出现造隙及排出,游离状天然气进入页岩裂缝中并聚积。

页岩岩性多为沥青质或富含有机质的暗色、黑色泥页岩和高碳泥页岩类,岩石组成一般包括30%~50%的粘土矿物、15%~25%的粉砂质(石英颗粒)和4%~30%的有机质。正是由于页岩具有这样的特性,所以页岩中的天然气具有多种存在方式,主要包括了2种形式,即游离态(大量存在于页岩孔隙和裂缝中)和吸附态(大量存在于粘土矿物、有机质、干酪根颗粒及孔隙表面上),其中吸附态存在的天然气占天然气赋存总量的20%以上(BarnettShale)到85%(LewisShale)。

页岩气形成原因

前人对美国5大页岩气盆地页岩气的成因研究表明,页岩气可以通过以下2种途径演变而来。

1、热裂解成因气(自然生成)

页岩中热成因气的形成有3个途径(如图):①干酪根分解成气体和沥青;②沥青分解成油和气体(步骤1和步骤2为初次裂解);③油分解成气体、高含碳量的焦炭或者沥青残余物(二次裂解)。最后一个步骤主要取决于系统中油的残余量和储层的吸附作用。德克萨斯州的Fort Worth盆地的Barnett页岩气就是通过来源于干酪根热降解和残余油的二次裂解,主要以残余油的二次裂解为主,正因为如此,使得Barnett页岩气具有较大资源潜力。

页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间,以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中。天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中。天然气生成之后,在源岩层内的就近聚集,表现为典型的原地成藏模式,与油页岩、油砂、地沥青等差别较大。与常规储层气藏不同,页岩既是天然气生成的源岩,也是聚集和保存天然气的储层和盖层。因此,有机质含量高的黑色页岩、高碳泥岩等常是最好的页岩气发育条件。

2、生物成因气

一般指页岩在成岩的生物化学阶段直接由细菌降解而成的气体,也有气藏经后期改造而成的生物气。如美国密歇根盆地的Antrim页岩气是干酪根成熟过程中所产生的热降解气和产甲烷菌新陈代谢活动中所产生的生物成因气,以后者为主。其原因可能是发育良好的裂缝系统不仅使天然气和携带大量细菌的原始地层水进入Antrim页岩内,而且来自上覆更新统冰川漂移物中含水层的大气降水也同时侵入,有利于细菌甲烷的形成。

页岩气形成条件

1、沉积环境

较快的沉积条件和封闭性较好的还原环境是黑色页岩形成的重要条件。沉积速率较快可以使得富含有机质页岩在被氧化破坏之前能够大量沉积下来,而水体缺氧可以抑制微生物的活动性,减小其对有机质的破坏作用。如Fort Worth盆地Barnett组富有机质黑色页岩沉积于深水(120~215米)前陆盆地,具有低于风暴浪基面和低氧带(OMZ)的缺氧—厌氧特征,与开放海沟通有限。

2、有效厚度

广泛分布的泥页岩是形成页岩气的重要条件。同时,沉积有效厚度是保证足够的有机质及充足的储集空间的前提条件,页岩的厚度越大,页岩的封盖能力越强,有利于气体的保存,从而有利于页岩气成藏。美国5大页岩气勘探开采区的页岩净厚度为9.14~91.44米,其中产气量较高的Barnett页岩和Lewis页岩的平均厚度在30.48米以上。

3、总有机碳含量(TOC)

总有机碳含量是烃源岩丰度评价的重要指标,也是衡量生烃强度和生烃量的重要参数。有机碳含量随岩性变化而变化,对于富含粘土的泥页岩来说,由于吸附量很大,有机碳含量最高,因此,泥页岩作为潜力源岩的有机含量下限值就愈高,而当烃源岩的有机质类型愈好,热演化程度高时,相应的有机碳含量下限值就低。对泥质油源岩中有机碳含量的下限标准,国内外的看法基本一致,为0.4%~0.6%,而泥质气源岩有机碳含量的下限标准则有所不同。大量研究结果表明,气态烃分子小,在水中的溶解能力强,易于运移,气源岩有机碳含量的下限标准要比油源岩低得多。美国5大页岩气系统页岩总有机碳含量较高,分布范围大(0.5%~25%),可分为2类,Antrim页岩和New Albany页岩的TOC含量较高,一般分布于0.3%~25%之间;而Ohio页岩、Barnett页岩和Lewis页岩的TOC含量在0.45%~4.7%之间。

4、干酪根类型和成熟度

在不同的沉积环境中,由不同来源有机质形成的干酪根,其组成有明显的差别,其性质和生油气潜能也有很大差别。因此,研究干酪根的类型(性质)是油气地球化学的一项重要内容,也是评价干酪根生油、生气潜力的基础。干酪根类型是衡量有机质产烃能力的参数,不同类型的干酪根同时也决定了产物以油为主还是以气为主。一般来说,Ⅰ型干酪根和Ⅱ型干酪根以生油为主,Ⅲ型干酪根则以生气为主。纵观美国页岩气盆地的页岩干酪根类型,主要以Ⅰ型干酪根与Ⅱ型干酪根为主,也有部分Ⅲ型干酪根,而且不同干酪根类型的页岩都生成了数量可观的气,有理由相信,干酪根类型并不是决定产气量的关键因素。沉积岩石中分散有机质的丰度和成烃母质类型是油气生成的物质基础,而有机质的成熟度则是油气生成的关键。干酪根只有达到一定的成熟度才能开始大量生烃和排烃。不同类型的干酪根在热演化的不同阶段生烃量也不同。在低熟阶段(0.4%~0.6%),有机质就可以向烃类转变。美国5大页岩盆地页岩的热成熟度分布范围在0.4%~2.0%之间,可见在有机质生烃的整个过程都有页岩气的生成。随着成熟度的增加,早期所生成的原油开始裂解成气。美国Barnett页岩之所以含气量大,主要源于生烃体积(有机质丰度、生烃潜力和页岩厚度引起的结果),成熟度以及部分液态烃持续裂解生气。成熟度越低的Barnett页岩区,其气体产量就越低,这可能是因为生气少,残留烃的流动阻塞孔隙的缘故。许多高熟的Barnett页岩区干酪根和油的裂解使生气量大幅提高,导致页岩气井气体流量大。因此,成熟度是评价高流量页岩气相似性的关键地球化学参数。

页岩气影响成藏因素

1、孔隙度

在常规储层中,孔隙度是描述储层特性的一个重要方面。页岩储层也是如此。作为储层,页岩多显示出较低的孔隙度(<10%),当然也可以有很大的孔隙度,且在这些孔隙里储存大量的游离气,即使在较老的岩层,游离气也可以充填孔隙的50%。游离气含量与孔隙体积的大小密切联系。一般来说,孔隙体积越大,所含的游离气量就越大。

2、裂缝发育

页岩的矿物成分较复杂,石英含量高,且多呈粘土粒级,常以纹层形式出现,而有机质、石英含量都很高的页岩脆性较强,容易在外力作用下形成天然裂缝和诱导裂缝,有利于天然气渗流,说明岩性、岩石矿物成分是控制裂缝发育程度的主要内在因素。

由于页岩具有低孔隙度低渗透率的特性,产气量不高,而那些开放的矩形天然裂缝弥补了这一不足,大大提高了页岩气产量。裂缝改善了泥页岩的渗流能力,裂缝既是储集空间,也是渗流通道,是页岩气从基质孔隙流入井底的必要途径。并不是所有优质烃源岩都能够形成具有经济开采价值的裂缝性油气藏,只有那些低泊松比、高弹性模量、富含有机质的脆性页岩才是页岩气资源的首要勘探目标。

3、有机碳含量

在裂缝性页岩气系统中,页岩对气的吸附能力与页岩的总有机碳含量之间存在线性关系。

在相同压力下,总有机碳含量较高的页岩比其含量较低的页岩的甲烷吸附量明显要高。页岩气除了被有机质表面所吸附之外,还可以吸附在粘土的表面(干燥)。在有机碳含量接近和压力相同的情况下,粘土含量高的页岩所吸附的气体量要比粘土含量低的页岩高。而且随着压力的增大,差距也随之增大。

4、地层压力

地层压力也是影响页岩气产量的因素之一。研究表明,地层压力与吸附气有着正相关性,地层压力越大,页岩的吸附能力就越大,吸附气的含量也就越高。游离气含量也会随着压力的增加而增加,两者基本上呈线性关系。值得注意的是,压力在6.89MPa以前,吸附气含量随压力增加的幅度很明显,而在其之后,增加的幅度不太明显,类似于常规的致密气藏。当然,不同地区由于有机质含量和周围围岩封存能力的不同,压力梯度也会产生差异。

除了上述影响因素之外,有机质类型、成熟度等也会影响页岩气含量。

页岩气成藏过程

页岩气经历了复杂多变的成藏过程,是天然气成藏机理序列中的重要构成和典型代表。根据不同的成藏条件,页岩气成藏可以表现为典型的吸附机理、活塞运聚机理或置换运聚机理。按照成藏机理的不同,可将天然气成藏过程分为3个主要阶段,而前2个阶段即是页岩气的成藏过程。

第1阶段是天然气的生成与吸附。该阶段发生在成藏初期,与煤层气的成藏机理相同。由于页岩中的有机碳等物质表面具有吸附能力,页岩生气过程中,最开始生成的少量天然气均被有机碳等物质吸附,故页岩层中仅存有吸附态的天然气(图A)。

第2阶段是天然气的造隙及排出。该阶段处于生气高峰期,与根缘气的形成机理类似。随着天然气的大量生成,页岩中的有机碳无法将其完全吸附,因此未被吸附的天然气在页岩层中以游离态聚集。随着页岩气的不断生成,聚集的大量游离气因膨胀而形成高压,直至岩层破裂并产生微裂隙。由于此时产生的裂缝或孔隙极其微小,使得页岩气无法在页岩层内部自由流动。在此后的强力生烃作用即生气膨胀力的作用下,页岩气沿构造上倾方向从底部高压区向高部相对低压区发生排驱和整体推进作用,从而使地层处于大面积包含气状态。此阶段生成的天然气不受浮力作用,表现为活塞式的运聚特征(图B)。

第3阶段是天然气的置换与运移。如果天然气的生成量持续增加而页岩层的外部又有合适的储层,则在浮力作用下,天然气将以置换方式沿裂缝从泥页岩层向储层运移,从而形成常规天然气藏(图C)。

页岩气成藏过程中,吸附机理与活塞式运聚机理共同作用,控制着页岩气藏中吸附态和游离态天然气所占空间比例变化。因此,页岩气的成藏机理实质上是天然气在页岩孔隙中赋存状态之间的动态平衡。页岩中吸附态天然气的存在是由其本身所含岩石特性决定的,与保存条件没有直接关系,故页岩气成藏后对保存条件没有特殊要求。在四川盆地海相地层中监测到的气测异常也证实了即便是多期次的构造运动,也不会对页岩气藏有太大的影响。

YUY-HY117气-气列管换热实验装置

装置特点

1、整个装置美观大方,结构设计合理,整体感强,具备强烈的工程化气息,能够充分体现现代化实验室的概念。

2、设备整体为自行式框架结构,并安装有禁锢脚,便于系统的拆卸检修和搬运。

3、本给热系数测定实验装置以冷热空气为介质,采用气-气换热体系,数据测量准确,实验效果理想,自动化程度高。

4、装置采用列管换热器进行冷热气体间的换热,冷空气采用空气而非水,节约了水资源。双风机主副回路设计,逆流并流换热流程切换,更贴近工业应用的实际。

5、采用可控硅调压模块控制加热室功率,多组U型翅片加热管预热系统,加热速度快而均匀,铂热电阻+可控硅+加热管作为热流体温度的主控手段。

6、整套设备除去特殊材料外均采用工业用304全不锈钢材料制作,整体进行精细抛光处理,体现整个装置的工艺完美性。

7、装置设计可360度观察,实现全方位教学与实验。

装置功能

1、了解列管换热器结构及流程,掌握给热系数测定的实验方法。

2、比较列管换热器逆流、并流换热实验的流程及效果。

3、了解影响对流给热系数的因素和强化传热的途径。表现主要热阻侧流体流速的改变对总传热速率的影响。

设计参数

雷诺数Re:<3.5×104。

冷流体(空气)流量:0~80m3/h。冷流体(空气)温度:常温~60℃。

热流体(空气)流量:0~60m3/h。热流体(空气)温度:80~110℃。

公用设施

电:电压AC220V,功率4.0KW,标准单相三线制。每个实验室需配置1~2个接地点(安全地及信号地)。

气:空气来自风机(自带气源),热流体自带不锈钢加热器连接风机。

实验物料:空气,外配设备:无。

主要设备

换热器:全304不锈钢换热器,外设镜面保温层。热流体走管内,冷流体走管间。换热管规格 Ф12×1.5 mm ,共13根,长1000mm,总换热面积0.48m2。换热方式可选择逆流或并流。

加热筒:304不锈钢,加热功率3.0KW,法兰拆卸式加热棒。

风机:旋涡气泵,功率 550W,最大风量90 m3/h,最大风压13KPa,与系统软连接减震降噪,旁路阀调节风量。冷流体进出管:304不锈钢材质,DN40,进口闸阀调节流量,换热器进口段法兰连接转子流量计。

热流体进出管:304不锈钢材质,DN40,带保温层。

宇电AI704M多路数字温度显示仪。

宇电AI702M多路数字温度显示仪。

宇电AI518温度控制仪(带手动功能)。

K型热电偶温度传感器6支,Pt100铂电阻温度传感器1支。

电器:接触器、开关、漏电保护空气开关。

304不锈钢管路、管件及阀门。

304不锈钢仪表柜:测控、电器设备在实验架上。

304不锈钢材质框架1800*500*1800mm(长×宽×高),带脚轮及禁锢脚。

气囊式膨胀罐相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏