带状双芯光纤及其双折射特性分析
试制了一种带状双芯光纤。根据带状双芯光纤的结构特点,给出了其在制作光纤器件及光纤传感器上的典型应用。利用有限元软件仿真分析了带状双芯光纤的双折射特性,通过调整光纤模型的结构参数,给出了该光纤双折射随光纤包层厚度的变化而改变的趋势,对于新型特种双芯光纤的设计和改进具有一定的参考意义。
线双折射磁光光纤光栅中光偏振态演化
根据导波光的微扰理论得到了线双折射磁光光纤光栅中导波光耦合模方程,并给出了其解析解。借助于归一化斯托克斯参量,研究了线双折射与磁圆双折射对光纤光栅中光偏振态的影响。研究表明,线双折射磁光光纤光栅中存在左旋和右旋两个本征的椭圆光偏振态,线双折射或磁圆双折射的大小只引起本征偏振态椭圆率的变化,而不改变主轴方位角。通过调节磁光光纤光栅中两种双折射的相对大小可方便地控制输出导波光的偏振态,从而使磁光光纤光栅在光纤通信与传感中具有广泛的潜在应用。
光纤布喇格光栅应力双折射的研究
实验研究了侧向挤压作用下的光纤布喇格光栅(fbg)产生的应力双折射现象,提出了一种消除横向应力对温度交叉敏感的简单而又有效的方法,从理论和实验上进行了分析与验证。研究表明,对fbg施加侧向挤压产生的双折射导致普通光纤布喇格光栅存在两个满足布喇格条件的反射光谱,且双峰间距在100℃的温度范围内变化了0.055nm,利用该双峰间距的变化可消除温度传感中横向应力对它的交叉敏感,实现对温敏系数的修正及温度的校正,实验中测得的原始温敏系数是0.0138nm/℃,对温敏系数修正了0.005nm/℃,对变化的温度校正了4℃。
高双折射光子晶体光纤中均匀布拉格光栅的特性
研究了具有高双折射的光子晶体光纤(hbpcf)中均匀布拉格光栅(fbg)的光谱特性。利用紧凑的超格子模型,对光子晶体光纤的传输特性进行分析,研究正向传输和反向传输的模式之间的耦合规律,从而研究写入光子晶体光纤中的均匀布拉格光栅的特性。首先给出具有c6v对称性的零双折射光子晶体光纤中光纤布拉格光栅的布拉格波长λb随光纤结构参量的变化规律;然后分析一种高双折射光子晶体光纤中的光纤布拉格光栅的光谱特性,高双折射使两个不同偏振态的反射峰分开较大;最后分析了一种常用的双模双折射光子晶体光纤中光纤布拉格光栅的光谱特性,lp01模和lpe11模的两个偏振态对应的反射谱都由于高双折射而分开。
弱双折射光纤布喇格光栅反射偏振对温度响应特性的研究
理论分析了切趾弱双折射光纤布喇格光栅反射偏振相关特性与温度之间的关系.数值模拟了切趾弱双折射光纤光栅的反射谱、偏振相关损耗和差分群时延随波长变化曲线.实验测出了不同温度下反射谱、偏振相关损耗和差分群时延随波长变化曲线.根据实验结果对偏振相关损耗和差分群时延的变化情况作出了分析.反射偏振相关损耗呈现两个峰值,随温度增加两峰漂移程度相同,表明偏振相关损耗无明显差异.差分群时延最大值随温度增加成线性向长波方向漂移,证明了光纤光栅正交模损耗变化的等同性.综合理论分析与实验结果表明:切趾弱双折射光纤布喇格光栅的偏振特性随温度产生明显的变化,其正交模变化呈现等比例特性.
基于双芯光纤的长周期光纤光栅及其耦合特性
报道了一种基于偏芯结构的双芯光纤制作的长周期光纤光栅,研究了在这种双芯光纤中写入相同结构的长周期光纤光栅的模式耦合特性,这种双芯结构能够将两个平行的长周期光纤光栅集成在一根光纤中。通过模拟计算发现在光纤圆周横截面不同方位进行曝光,可获得不同的光栅透射谱,通过利用co2激光脉冲曝光方法实现其制备,实验得出了采用单侧曝光方法在偏芯结构的双芯光纤上制备长周期光纤光栅的最佳写入方式。通过理论分析和实验的对比,结果表明,双芯长周期光纤光栅透射谱依赖于在双芯光纤圆周上的曝光方向。
纤芯失配型光纤传感器折射率敏感特性
根据菲涅耳公式和功率反射系数关系式,分析纤芯失配型光纤传感器折射率传感原理;采用单模/多模光纤制作传感器,研究传感器输出光功率随甘油溶液折射率变化特征,并验证理论计算结果。表明媒质折射率n_2=1.300~1.441时,传感器输出光功率强且几乎不发生变化;n_2=1.441~1.452时,传感器输出光功率呈线性快速下降,其斜率为-155.91;当媒质折射率与单模光纤包层折射率接近时,传感器输出光功率几乎为0。验证实验发现,传感器线性快速下降的折射率范围为1.442~1.454,斜率为-49.67,其输出光功率随甘油溶液折射率变化规律与数值模拟结果基本一致。该传感器具有结构简单、成本低、传感系统全光纤化等特点,能用于有毒有害、易燃易爆等特殊环境下物质折射率的高精度测量。
光纤布拉格光栅线双折射对磁场测量的影响
由法拉第效应原理,通过测量磁场引起光纤布拉格光栅(fbg)的偏振相关损耗(pdl),可以测得磁感应强度大小。fbg中线双折射的存在,同样改变了光的偏振特性,仿真并实验验证了fbg固有偏振相关损耗的特点。利用琼斯矩阵法理论推导了fbg在既有双折射又有磁场影响时,输入线偏振光偏振态的变化规律。通过对偏振相关损耗与线偏振光起偏角和双折射大小的仿真分析可知,不同起偏角的线偏光对线双折射的敏感度不同。在线双折射的影响下,偏振相关损耗峰值随起偏角大小呈周期性变化,对磁场测量的灵敏度产生影响,而与磁感应强度的线性关系并未发生变化。
低双折射均匀光纤布拉格光栅斯托克斯参量的研究
根据耦合模理论和琼斯矩阵与斯托克斯矢量的关系给出单模均匀光纤布拉格光栅(fbg)反射和透射斯托克斯参量公式,数值模拟出低双折射单模光纤均匀fbg在不同双折射值下反射和透射斯托克斯参量随波长变化的曲线。结果显示4个归一化斯托克斯参量中,s1关于中心波长λ0呈反对称分布,s0,s2和s3关于λ0呈对称分布;双折射值增大谱线不产生漂移,但谱线反射带宽变窄,反射信号与透射信号斯托克斯参量振幅均有不同程度的变化,表明双折射值对斯托克斯参量的影响非常显著。测出单模光纤均匀fbg反射和透射斯托克斯参量随波长变化曲线,理论分析与实验结果基本符合。
光纤线性双折射对Sagnac电流传感的影响
本文应用琼斯矩阵在理论上分析了光纤线性双折射对sagnac电流传感的影响,并指出为了使sagnac电流传感器的稳定性达到实用化程度,允许的线性双折射应不大于10-6rad/m量级。另外,旋转sagnac环两输入端使之两端本地坐标系互相垂直可极大地减小光纤线性双折射的影响。
固胶对光纤线圈热应力干扰双折射的影响
根据光纤线圈受热应力的实际影响,推导了线圈中因排线引起的光纤挤压应力双折射,并提出利用有限元瞬态热分析的方法研究固胶处理对线圈中热应力干扰双折射的影响。通过对固胶处理前后线圈中典型光纤受热应力的影响的数值模拟计算得出,固胶处理后的光纤线圈存在着一个与胶粘剂参数有关的温度区域,在此区域内线圈受到的应力干扰双折射最小,且温度敏感性降至最低。通过对1000m保偏光纤线圈的实际测试表明,这一温度区域的消光比指标高于低温段1.5db,证明了模型的有效性。提出了固胶材料温度特性与环境温度的匹配性概念。
纤芯失配的光纤Mach-Zehnder折射率传感器
纤芯失配的光纤Mach-Zehnder折射率传感器
基于纤芯失配多模干涉的光纤折射率传感器
基于多模干涉效应的单模-多模-单模(sms)结构光纤折射率传感器通常需要进行包层腐蚀来提高灵敏度,而且易受环境温度影响。为克服sms结构的这些不足,提出了一种新型的基于纤芯失配多模干涉的光纤折射率传感器,由单模光纤-色散补偿光纤-单模光纤(smf-dcf-smf)级联光纤布拉格光栅(fbg)构成,长度不超过100mm。对其灵敏度、线性范围和温度特性等进行了测试,实验结果显示在测量折射率为1.33~1.39的折射率液时,特征波长与折射率呈线性关系,灵敏度为232.8nm,级联的fbg具有良好的温度校准功能。
布拉格光纤光栅等效芯径和折射率的测量
提出一种通过布拉格光纤光栅传输谱线计算其纤芯直径和折射率的方法.实验中采用较短波长的相位掩模板及紫外光照射载氢的单模光纤来写布拉格光栅.通过测量lp01模与反向传输的lp01、lp02模耦合所对应的损耗峰,并将对应的两中心波长分别带入色散方程,来计算同时满足布拉格光栅相位匹配条件的解,即可求出该光纤光栅纤芯直径和折射率.这种方法为测量光纤光栅参数提供了一种新的途径.
基于包层模的光纤布拉格光栅折射率传感特性
提出了基于光纤布拉格光栅(fbg)包层模式的折射率传感方案。实验中,利用不同浓度的丙三醇水溶液作为外界折射率传感溶液,采用氢氟酸溶液化学腐蚀的方法来减小光纤包层的直径以增大包层模式对外界折射率的敏感度,研究了腐蚀后光纤布拉格光栅包层模式的耦合波长对外部折射率的变化关系。实验结果表明在1.3300~1.4584的折射率范围内,包层模式耦合波长随外界折射率增大而增大,在接近光纤包层折射率处具有很高的折射率灵敏度,最大达到了172nm/riu(refractiveindexunit)。而且,包层模谐振的光谱半峰全宽(约0.07nm)仅为布拉格纤芯模谐振光谱半峰全宽的1/4,能够获得更好的传感精度。
氟化梯度折射率塑料光纤带宽特性计算
基于氟化聚合物梯度折射率圆对称塑料光纤(pf-gipof)的传输参量计算,分析其传输特性,推导出频域基带功率传输函数,得到一种参数完整的色散计算模型.理论分析了光源特性、模式时延和模式损耗对带宽的影响并对色散进行拟合和计算.在波长和激光斑半径相异的光源激励下,对不同长度、不同折射率指数的pf-gipof的频率响应进行仿真验证.理论计算和实验结果表明,200m长的pf-gipof在1300nm工作波长下,半径11.76μm的激光斑激励出的传导模最少,由于差分模式损耗作用,系统带宽提升了3.56ghz,在α=2.16的折射率下可以得到最大的带宽优化.该计算模型可有效地用于pf-gipof通信系统的参量选取和带宽预测.
双芯光纤马赫-曾德尔干涉仪的温度特性
双芯光纤马赫-曾德尔干涉仪的温度特性
单芯光纤与双芯光纤的对接和熔接耦合效率分析
单芯光纤和双芯光纤的耦合问题是限制双芯光纤研究和应用深度的关键问题之一。利用突变光波导的分析方法,在高斯近似的模场分布下,推导了单芯单模光纤和双芯单模光纤对接和熔接的耦合能量、总体耦合效率和两纤芯耦合能量比的数学表达式。利用这组关系定量地详细分析了单芯光纤和双芯光纤耦合中的模场匹配、双芯光纤的纤芯距和纤芯位置对耦合效果的影响。利用其中一个纤芯位于光纤中心的双芯光纤,通过保偏熔接机进行辅助定位,实测了单芯单模光纤与双芯单模光纤对接耦合的输出能量与纤芯位置的关系,测量结果能够很好地与理论结果相符合。
光纤电流互感器中传感光纤的椭圆双折射测量
分析了全光纤电流互感器(afoct)光纤元件的双折射来源和影响,针对其应力加载特征,提出一种适用于系统的光纤双折射参数测量方法。测量基于研究双折射对偏振态的调制情况,在邦加球上分析传输光偏振态随不同光程的演化轨迹,可获得待测光纤椭圆双折射参数,相对误差在2.85%以内。验证实验说明基于测量结果的变比估计相对偏差1.08%。该方法准确度优于传统方法,装置结构简单易于实现。由传感光纤双折射测量结果可推导afoct系统的变比,也可作为温度、振动补偿实验的依据。本方法可作为设计制作afoct系统过程中的一个有力的参考。
双包层光纤折射率研究及纤芯结构优化设计
采用matlab和comsol建立单模光纤内激光传输模型,对双包层内光纤折射率和纤芯结构对光能量分布的影响进行了理论研究。系统分析了光纤芯径与数值孔径、归一化频率和功率填充因子的关系,依据得到的结果进一步采用多模物理耦合仿真方法对不同类型的单模双包层光纤纤芯的能量分布进行仿真,探索了不同折射率分布情况对纤芯能量分布的影响。计算和仿真结果表明:凹面折射率分布光纤的光斑模场面积最大,单位面积的功率分布最低。针对大功率光纤激光器的应用需求设计了工作波长为1.064μm、纤芯直径为10μm、凹面直径为8μm、数值孔径为0.12的单模凹面折射率双包层光纤,为提高光纤泵浦效率、降低纤芯的能量密度提供了思路。
少模光纤布拉格光栅折射率传感的分析与测量
理论分析和模拟计算了少模光纤布拉格光栅基模及高阶模的耦合与传输特性,得到在相同外部折射率变化情况下,少模光纤基模与高阶模耦合对应的布拉格波长变化,比正、反向基模之间耦合对应的布拉格波长变化显著增大。实验上制作了少模光纤布拉格光栅,测量了基模之间以及基模与高阶模之间对应的布拉格波长随外部折射率、温度变化的情况,得到与理论分析相符的结果。而对于温度变化对折射率测量结果干扰的问题,提出了通过计算布拉格波长差来克服温度影响的方法。这些结果为采用布拉格光纤光栅测量外部折射率变化提供了一种新的途径。
基于闪耀光纤布拉格光栅功率检测折射计的理论分析
利用复模式耦合模理论分析了基于闪耀光纤布拉格(bragg)光栅功率检测的折射计中不同设计参数对折射计性能的影响。利用完全匹配层(pml)技术简化了辐射模分析模型。分析结果表明,随着光栅倾斜角度的增大,折射计的感应范围向折射率较小的方向移动。随着光栅长度以及折射率调制强度的增大,折射计的灵敏度增大,但折射率感应范围不变。同时这种折射计具有偏振依赖性,随着光栅倾斜角的增大偏振依赖性提高。因此在这种传感系统中需要引入精确且稳定的偏振控制。
基于长周期光纤光栅嵌入型Sagnac环光谱的折射率测量
将长周期光纤光栅(lpg)和光纤sagnac环相结合,实现了折射率和温度的同时测量。首先利用二氧化碳激光器在保偏光纤上制作了长周期光纤光栅(pm-lpg),然后把该pm-lpg和普通单模光纤耦合器组成sagnac环,作为传感单元。实验选择其某一透射峰作为测试对象,其波长随温度变化,强度随折射率变化,因此可实现两个参量的同时测量。实验获得的温度灵敏度为-0.654nm.℃-1,折射率灵敏度为49.9db.riu-1。整个实验系统成本低、简单实用,具有较好的应用前景。
文辑推荐
知识推荐
百科推荐
职位:房建施工员
擅长专业:土建 安装 装饰 市政 园林