kd-tree构建算法

k-d树是一个二叉树,每个节点表示一个空间范围。表1给出的是k-d树每个节点中主要包含的数据结构。

表1 k-d树中每个节点的数据类型

域名

数据类型

描述

Node-data

数据矢量

数据集中某个数据点,是n维矢量(这里也就是k维)

Range

空间矢量

该节点所代表的空间范围

split

整数

垂直于分割超平面的方向轴序号

Left

k-d树

由位于该节点分割超平面左子空间内所有数据点所构成的k-d树

Right

k-d树

由位于该节点分割超平面右子空间内所有数据点所构成的k-d树

parent

k-d树

父节点

从上面对k-d树节点的数据类型的描述可以看出构建k-d树是一个逐级展开的递归过程。表2给出的是构建k-d树的伪码。

表2 构建k-d树的伪码

算法:构建k-d树(createKDTree)

输入:数据点集Data-set和其所在的空间Range

输出:Kd,类型为k-d tree

1.If Data-set为空,则返回空的k-d tree

2.调用节点生成程序:

(1)确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。以SURF特征为例,描述子为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;

(2)确定Node-data域:数据点集Data-set按其第split域的值排序。位于正中间的那个数据点被选为Node-data。此时新的Data-set' = Data-set\Node-data(除去其中Node-data这一点)。

3.dataleft = {d属于Data-set' && d[split] ≤ Node-data[split]}

Left_Range = {Range && dataleft} dataright = {d属于Data-set' && d[split] > Node-data[split]}

Right_Range = {Range && dataright}

4.left = 由(dataleft,Left_Range)建立的k-d tree,即递归调用createKDTree(dataleft,Left_

Range)。并设置left的parent域为Kd;

right = 由(dataright,Right_Range)建立的k-d tree,即调用createKDTree(dataright,Right_

Range)。并设置right的parent域为Kd。

以上述举的实例来看,过程如下:

由于此例简单,数据维度只有2维,所以可以简单地给x,y两个方向轴编号为0,1,也即split={0,1}。

(1)确定split域的首先该取的值。分别计算x,y方向上数据的方差得知x方向上的方差最大,所以split域值首先取0,也就是x轴方向;

(2)确定Node-data的域值。根据x轴方向的值2,5,9,4,8,7排序选出中值为7,所以Node-data = (7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于split = 0(x轴)的直线x = 7;

(3)确定左子空间和右子空间。分割超平面x = 7将整个空间分为两部分,如图2所示。x < = 7的部分为左子空间,包含3个节点{(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点{(9,6),(8,1)}。

如算法所述,k-d树的构建是一个递归的过程。然后对左子空间和右子空间内的数据重复根节点的过程就可以得到下一级子节点(5,4)和(9,6)(也就是左右子空间的'根'节点),同时将空间和数据集进一步细分。如此反复直到空间中只包含一个数据点,如图1所示。最后生成的k-d树如图3所示。

kd-tree造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
SDK算法接入软件 算法仓库的功能包括算法管理、调度管理和算法评价等.通过统一发布的标准接口 支持以SDK对接调用的方式接入任意厂家的任意分析算法. 查看价格 查看价格

L.JOY

13% 南京埃尔乔亿自控设备有限公司
算法建库质量评价软件 算法评价是算法仓库作为平台的一个评分功能 建库质量评价. 查看价格 查看价格

L.JOY

13% 南京埃尔乔亿自控设备有限公司
算法比对质量评价软件 算法评价是算法仓库作为平台的一个评分功能 比对质量评价. 查看价格 查看价格

L.JOY

13% 南京埃尔乔亿自控设备有限公司
算法摄像机 图像传感器具有1/1.8cmOS;分辨率支持2560×1440;镜头:37倍光学变倍 焦距5.6-208mm;支持多算法切换:支持人脸抓拍、 查看价格 查看价格

海康威视

13% 东莞广恩电子有限公司
人脸算法系统V1.0 规格mm 型号V1.0 材质1、支持200台终端;2、可支撑5万用户量. 查看价格 查看价格

13% 重庆汇腾酒店设备有限公司
400万多算法筒型摄像机 车辆识别柔光筒型摄像机 查看价格 查看价格

华为

13% 北京宏远合创科技有限公司
高速混合引擎识别算法U盘脱机考勤机 型号:X938plus;类型:刷卡;品种:考勤机; 查看价格 查看价格

中控科技

13% 呼和浩特市舒易电子技术有限责任公司
穿孔吸音板 产品说明:构建吸声吊顶,厚度(mm):6,规格(mm):600×600, 查看价格 查看价格

纽菲德

m2 13% 杭州纽菲德节能技术有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
暂无数据
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
AI算法训练 AI算法训练|25天 3 查看价格 广州市熹尚科技设备有限公司 广东   2021-07-16
AI算法训练 AI算法训练|60天 3 查看价格 浙江大华技术股份有限公司深圳分公司 广东   2021-03-31
客流算法授权 客流分析算法授权|109路 2 查看价格 广州天锐信息工程有限公司 全国   2021-05-31
人脸算法授权 人脸算法,按照接入路数收费,前端抓拍机数量|1000路 1 查看价格 广州帝视尼电子科技有限公司 广东   2019-10-30
C25混凝土定制围栏构建 C25混凝土定制围栏构建|1m 1 查看价格 佛山市荣飞护栏工程有限公司 广东   2022-03-28
500万高空抛物摄像机-算法 高空抛物算法|42路 1 查看价格 广州市熹尚科技设备有限公司 全国   2021-12-02
货梯KD6#/KD7# 详附件|1台 3 查看价格 日立电梯(中国)有限公司深圳分公司 全国   2021-01-18
货梯KD5#/KD8# 详附件|1台 3 查看价格 日立电梯(中国)有限公司深圳分公司 全国   2021-01-18

kd-tree实例

先以一个简单直观的实例来介绍k-d树算法。假设有6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间内(如图1中黑点所示)。k-d树算法就是要确定图1中这些分割空间的分割线(多维空间即为分割平面,一般为超平面)。下面就要通过一步步展示k-d树是如何确定这些分割线的。

k-d树算法可以分为两大部分,一部分是有关k-d树本身这种数据结构建立的算法,另一部分是在建立的k-d树上如何进行最邻近查找的算法。

kd-tree查找算法

在k-d树中进行数据的查找也是特征匹配的重要环节,其目的是检索在k-d树中与查询点距离最近的数据点。这里先以一个简单的实例来描述最邻近查找的基本思路。

星号表示要查询的点(2.1,3.1)。通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行'回溯'操作:算法沿搜索路径反向查找是否有距离查询点更近的数据点。此例中先从(7,2)点开始进行二叉查找,然后到达(5,4),最后到达(2,3),此时搜索路径中的节点为<(7,2),(5,4),(2,3)>,首先以(2,3)作为当前最近邻点,计算其到查询点(2.1,3.1)的距离为0.1414,然后回溯到其父节点(5,4),并判断在该父节点的其他子节点空间中是否有距离查询点更近的数据点。以(2.1,3.1)为圆心,以0.1414为半径画圆,如图4所示。发现该圆并不和超平面y = 4交割,因此不用进入(5,4)节点右子空间中去搜索。

再回溯到(7,2),以(2.1,3.1)为圆心,以0.1414为半径的圆更不会与x = 7超平面交割,因此不用进入(7,2)右子空间进行查找。至此,搜索路径中的节点已经全部回溯完,结束整个搜索,返回最近邻点(2,3),最近距离为0.1414。

一个复杂点了例子如查找点为(2,4.5)。同样先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,取(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。然后回溯到(5,4),计算其与查找点之间的距离为3.041。以(2,4.5)为圆心,以3.041为半径作圆,如图5所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找。此时需将(2,3)节点加入搜索路径中得<(7,2),(2,3)>。回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5。回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如图6所示。至此,搜索路径回溯完。返回最近邻点(2,3),最近距离1.5。k-d树查询算法的伪代码如下所示。

kd-tree构建算法常见问题

  • 算法?

    短跑的就是计算150厚度,按其水平投影面积计算,包含一半的梯井调出的板应该是单独计算,计入在挑檐板中吧

  • 算法

    一般都是300宽  3MM厚,这样每米重量为0.3*3*7.85=7.065kg,这样一吨为1000/7.065=141m

  • 算法

    也是计算的混凝土的体积啊只是要扣减压型棱槽

kd-tree构建算法文献

爆破拆除钢结构建筑计算机仿真算法及程序实现 爆破拆除钢结构建筑计算机仿真算法及程序实现

格式:pdf

大小:187KB

页数: 3页

评分: 4.8

 选择DDA方法作为仿真计算方法,叙述了钢结构爆破拆除计算机仿真软件的数据输入系统预处理程序、静力分析或动力分析程序、图形后处理程序等的功能和流程。还以一钢结构爆破拆除简例说明了该仿真软件的使用及其有效性。

立即下载
改进鲸鱼算法构建混合模型的建筑能耗预测 改进鲸鱼算法构建混合模型的建筑能耗预测

格式:pdf

大小:187KB

页数: 6页

评分: 4.3

建筑能耗数据具有非平稳和非线性特征;单一预测模型很难对其进行精准预测;提出一种用于建筑能耗短期预测的新型混合模型;利用互补集合经验模态分解方法(CEEMD)将波动性较大的能耗数据分解为一组本征模态函数和一个残差序列;基于反向学习、差分进化算法并引入控制参数λ对鲸鱼优化算法(WOA)进行改进;有效解决算法早熟收敛与陷入局部最优等的问题;提出改进算法UWOA(upgradedwhaleoptimizationalgorithm);利用UWOA优化Elman神经网络的权值与阈值;优化后的Elman神经网络对本征模态函数和残差序列进行预测并集成;得到能耗预测值;应用CEEMD-UWOA-Elman混合模型对上海某大型公共建筑能耗进行短期预测;结果显示混合模型获得很好的预测效果;

立即下载
kd-tree相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏