基坑监测

基坑监测是基坑工程施工中的一个重要环节,是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和周围环境条件的变化,进行各种观察及分析工作,并将监测结果及时反馈,预测进一步施工后将导致的变形及稳定状态的发展,根据预测判定施工对周围环境造成影响的程度,来指导设计与施工,实现所谓信息化施工。 

基坑监测基本信息

中文名 基坑工程监测 作    用 保证地下工程及基坑工程施工安全

基坑监测仪器设备及技术措施5.1 仪器设备

本项目投入仪器设备见表5-1:

表5-1 使用仪器设备一览表

序号

仪器名称

数量

精度

1

苏州一光DS05水准仪

1台

≤0.5mm

2

南方NTS-350全站仪

1台

5mm 3ppm、±2"

3

测读计

1台

2

铟钢水准标尺

2把

±0.02mm

3

广州晟探IN1000测斜仪

1台

±0.1mm

4

水位计

1台

±1mm

5

卡尺

1把

±1mm

6

办公电脑

1台

7

打印机

1台

5.2 监测精度

在监测工作中,监测精度应满以下要求:

1.高程采用水准测量,进行闭合路线或往返观测:按照要求水准每站观测高程中误差为 0.5mm,每月对水准每站进行检测,检测结果中误差均小于 0.2mm。水准附合路线,其附合差为±1.0√Nmm(N为测站数)。

2.基坑围护桩体测斜误差≤0.5mm。

3.平面位移监测误差≤1mm。

4.根据要求水准仪“i”角不大于6秒;所以我们每月对水准仪进行“i”角检测,控制“i”角在6秒内。

5.3 质量保证措施

1.认真执行我公司ISO9001质量保证体系文件。

2.对参与本工程的人员进行详细技术和质量交底,明确各监测人员职责。

3.经常和业主、监理、施工方联系,提供监测资料,及时将情况反馈到各方面。

4.对投入使用的仪器定期检校,确保采集的数据真实、可靠。

5.积极主动保护监测点。

基坑监测造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
监测 查看价格 查看价格

株洲中车机电

13% 株洲中车机电科技有限公司
流量监测 查看价格 查看价格

株洲中车机电

13% 株洲中车机电科技有限公司
参数监测功能 品种:断路器附件;系列:iVD4 智能化组件;类型:中压产品;规格:其他;产品说明:断路器状态参数监测功能,MDC2/4 安装与开关柜低压室 查看价格 查看价格

ABB

13% 西安赢家电器设备有限公司
监测装置 A-PHD300,可实现三相全电量测量,并监测断路器的工作及故障状态,并具有局部故障诊断和定位功能 查看价格 查看价格

亚派

13% 南京亚派软件技术有限公司
温升监测功能 品种:断路器附件;系列:iVD4 智能化组件;类型:中压产品;规格:其他;产品说明:一次回路(触臂部分)温升监测功能,MDC2/4 安装与开 查看价格 查看价格

ABB

13% 西安赢家电器设备有限公司
设备执行安全保障监测系统 PSH T100排水专用温度智能感应系统 查看价格 查看价格

中兴

13% 江苏中兴水务有限公司成都销售
监测、加药设备 查看价格 查看价格

德诺

13% 广州德诺泳池设备有限公司
UPS监测软件接口 JD-UPS 查看价格 查看价格

龙建达

13% 龙建达(南昌)科技发展有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年12月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年4月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年2月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2011年12月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年10月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年9月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年8月信息价
氨氮监测 0-50mg/L (MICROMAC-C-NH4-N) 查看价格 查看价格

珠海市2012年7月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
基坑监测项目 元/点|0点 1 查看价格 0 广东  中山市 2009-11-03
基坑监测项目 元/点|0点 1 查看价格 0 广东  中山市 2009-11-03
基坑分机 详见平面图|1套 3 查看价格 深圳市鼎杰迅科技有限公司 广东   2022-07-18
基坑支护钢管支撑租赁费用 基坑支护钢管支撑租赁费用|50t 1 查看价格 福建献县华东建筑器材租赁站 福建  厦门市 2016-03-15
动环监测系统 含配线、配管 机房配电系统监测、空调系统监测、UPS系统监测、温湿度监测、消防监测、漏水监测、蓄电池监测等|1系统 2 查看价格 北京汇鑫盛泰科技有限公司 全国   2020-01-02
风机监测系统 风机监测|1台 3 查看价格 广州轩辕宏迈信息科技有限公司 广东   2020-10-27
基坑设施安装 直径800×800×500|14单元 2 查看价格 广州市阿拉神灯游乐设备有限公司 广东   2021-04-27
沟槽、基坑回填 无|600m³ 1 查看价格 广西裕万土石方工程有限公司 广西  南宁市 2019-10-23

基坑监测主要包括:支护结构、相关自然环境、施工工况、地下水状况、基坑底部及周围土体、周围建(构)筑物、周围地下管线及地下设施、周围重要的道路、其它应监测的对象。

水平位移监测

测定特定方向上的水平位移时可采用视准线法、小角度法、投点法等;测定监测点任意方向的水平位移时可视监测点的分布情况,采用前方交会法、自由设站法、极坐标法等;当基准点距基坑较远时,可采用GPS测量法或三角、三边、边角测量与基准线法相结合的综合测量方法。当监测精度要求比较高时,可采用微变形测量雷达进行自动化全天候实时监测。

水平位移监测基准点应埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点,不应埋设在低洼积水、湿陷、冻胀、胀缩等影响范围内;基准点的埋设应按有关测量规范、规程执行。宜设置有强制对中的观测墩;采用精密的光学对中装置,对中误差不宜大于0.5mm。

竖向位移监测

竖向位移监测可采用几何水准或液体静力水准等方法。

坑底隆起(回弹)宜通过设置回弹监测标,采用几何水准并配合传递高程的辅助设备进行监测,传递高程的金属杆或钢尺等应进行温度、尺长和拉力改正等

基坑围护墙(坡)顶、墙后地表与立柱的竖向位移监测精度应根据竖向位移报警值确定。

深层水平位移监测

围护墙体或坑周土体的深层水平位移的监测宜采用在墙体或土体中预埋测斜管、通过测斜仪观测各深度处水平位移的方法。

倾斜监测

建筑物倾斜监测应测定监测对象顶部相对于底部的水平位移与高差,分别记录并计算监测对象的倾斜度、倾斜方向和倾斜速率。应根据不同的现场观测条件和要求,选用投点法、水平角法、前方交会法、正垂线法、差异沉降法等。

裂缝监测

裂缝监测应包括裂缝的位置、走向、长度、宽度及变化程度,需要时还包括深度。裂缝监测数量根据需要确定,主要或变化较大的裂缝应进行监测。

裂缝监测可采用以下方法:

1.对裂缝宽度监测,可在裂缝两侧贴石膏饼、划平行线或贴埋金属标志等,采用千分尺或游标卡尺等直接量测的方法;也可采用裂缝计、粘贴安装千分表法、摄影量测等方法。

2.对裂缝深度量测,当裂缝深度较小时宜采用凿出法和单面接触超声波法监测;深度较大裂缝宜采用超声波法监测。

3.应在基坑开挖前记录监测对象已有裂缝的分布位置和数量,测定其走向、长度、宽度和深度等情况,标志应具有可供量测的明晰端面或中心。

裂缝宽度监测精度不宜低于0.1mm,长度和深度监测精度不宜低于1mm。

支护结构内力监测

坑开挖过程中支护结构内力变化可通过在结构内部或表面安装应变计或应力计进行量测。对于钢筋混凝土支撑,宜采用钢筋应力计(钢筋计)或混凝土应变计进行量测;对于钢结构支撑,宜采用轴力计进行量测。围护墙、桩及围檩等内力宜在围护墙、桩钢筋制作时,在主筋上焊接钢筋应力计的预埋方法进行量测。支护结构内力监测值应考虑温度变化的影响,对钢筋混凝土支撑尚应考虑混凝土收缩、徐变以及裂缝开展的影响。

土压力监测

土压力宜采用土压力计量测。

土压力计埋设可采用埋入式或边界式(接触式)。埋设时应符合下列要求:

1.受力面与所需监测的压力方向垂直并紧贴被监测对象。

2.埋设过程中应有土压力膜保护措施。

3.采用钻孔法埋设时,回填应均匀密实,且回填材料宜与周围岩土体一致。

4.做好完整的埋设记录。

土压力计埋设以后应立即进行检查测试,基坑开挖前至少经过1周时间的监测并取得稳定初始值

孔隙水压力监测

孔隙水压力宜通过埋设钢弦式、应变式等孔隙水压力计,采用频率计或应变计量测。孔隙水压力计应满足以下要求:量程应满足被测压力范围的要求,可取静水压力与超孔隙水压力之和的1.2倍;精度不宜低于0.5%F·S,分辨率不宜低于0.2%F·S。孔隙水压力计埋设可采用压入法、钻孔法等。

地下水位监测

地下水位监测宜采通过孔内设置水位管,采用水位计等方法进行测量。地下水位监测精度不宜低于10mm。

锚杆拉力监测

锚杆拉力量测宜采用专用的锚杆测力计,钢筋锚杆可采用钢筋应力计或应变计,当使用钢筋束时应分别监测每根钢筋的受力。锚杆轴力计、钢筋应力计和应变计的量程宜为设计最大拉力值的1.2倍,量测精度不宜低于0.5%F·S,分辨率不宜低于0.2%F·S。应力计或应变计应在锚杆锁定前获得稳定初始值。

基坑监测常见问题

  • 基坑监测的内容

    1.水平位移监测,目的是监测基坑边壁的水平变形量、变形速率信息2. 竖向位移监测,目的是监测基坑围护墙顶、墙后地表与立柱的竖向位移信息3.深层水平位移监测,目的是监测围护墙体或基坑周围土体的深层水平位...

  • 什么是基坑监测?

    对基坑周边环境和基坑围护结构支撑体系的变形监测

  • 深基坑监测的内容

    基坑监测是基坑工程施工中的一个重要环节,是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和周围环境条件的变化,进行各种观察及分析工作,并将监测结果及时反馈,预测进-一步挖t施工后将导致...

南方日报2013-4-3讯 (记者/刘怀宇 通讯员/成乡伟 刘湘宇)2013年1月底,广州康王南路地铁工程突发塌陷。为避免类似事故发生,最近,市建委组织开发的地下工程和深基坑安全监测信息管理系统已顺利开始试运行,一旦工程发生安全隐患的苗头,系统可自动实时报警。据介绍,这套系统在国内还是首创。

近年来,省内以及广州市因地下工程或挖掘深基坑造成的塌陷屡有发生。地铁六号线文化公园站附近的康王南路与杉木栏路交接处突发塌陷,万幸未造成人员伤亡。深圳福田景洲大厦发生地陷,一名保安员身亡。莞惠城际轨道惠州段也多次发生地陷事故。

市建委有关负责人表示,为加强广州地下工程和深基坑安全监测工作,实现全市地下工程和深基坑监测工作的动态管理,保障工程施工安全,市建委组织开发了“地下工程和深基坑安全监测信息管理系统”,由广州市建设工程质量安全检测中心负责管理系统的设计研发工作,广州粤建三和软件股份有限公司负责软件开发工作。

据介绍,系统可以实现监测数据的自动采集、实时传输,并建立信息管理平台,通过数据分析,形成各类变化曲线和图形,使监测成果“形象化”。由于这套系统实现了检测数据自动采集,并利用无线传输技术或网络传输方式实现实时传输功能,减少人为因素对监测数据的干扰。目前这套系统在国内还是首创。

据记者了解,经过一个多月的紧张工作,该管理系统已开始试运行。目前广州地铁六号线大坦沙站、洲头咀隧道、天河区红十字会医院住院大楼等多个重点工程已经开始试运行这套系统了。“等试点成熟后,这套系统将在全市铺开。”市建委相关负责人说。2100433B

基坑监测等级划分

上海工程建设规范《基坑工程施工监测规程》DG-TJ08-2001-2006对基坑工程监测进行等级划分。《规程》规定基坑工程监测等级根据基坑工程安全等级、周边环境等级和地基复杂程度划分为四级。《规程》中表3.2.2 、表3.2.3、表3.2.4和表3.2.5分别列出了基坑工程安全等级、周边环境等级、地基复杂程度和基坑工程监测等级划分标准。

有多种监测技术和信号传输处理方式。根据青冶工程(QYETC)技术人员的经验,一般有监控专家系统、智能控制系统、可视化监测软件等几类配套工具,反应时间可控制在1s范围内,采样频率可达100Hz,完全能够做到实时监测,为工程建设提供信息化支持。

监测报表和监测报告

· 1.工程概况

· 2.监测项目及监测点平面和立面布置图

· 3.采用的仪器设备和监测方法

· 4.监测数据处理方法和监测结果过程曲线

· 5.监测结果分析

根据建筑基坑工程监测技术规范(GB50497-2009)Technical Code for Monitoring of Building Foundation Pit Engineering,基坑监测的处理过程也可以分为以下过程:

1.监测目的

2.确定监测项目

3.测点布置

4.监测方法、主要仪器及精度要求

5.监测频度

6.监控报警

7.数据处理及信息反馈。

1.基坑监测应由委托方委托具备相应资质的第三方承担。

2.基坑围护设计单位及相关单位应提出监测技术要求。

3.监测单位监测前应在现场踏勘和收集相关资料基础上,依据委托方和相关单位提出的监测要求和规范、规程规定编制详细的基坑监测方案,监测方案须在本单位审批的基础上报委托方及相关单位认可后方可实施。

4.基坑工程在开挖和支撑施工过程中的力学效应是从各个侧面同时展现出来的,在诸如围护结构变形和内力、地层移动和地表沉降等物理量之间存在着内在的紧密联系,因此监测方案设计时应充分考虑各项监测内容间监测结果的互相印证、互相检验,从而对监测结果有全面正确的把握。

5.监测数据必须是可靠真实的,数据的可靠性由测试元件安装或埋设的可靠性、监测仪器的精度、可靠性以及监测人员的素质来保证。监测数据真实性要求所有数据必须以原始记录为依据,原始记录任何人不得更改、删除。

6.监测数据必须是及时的,监测数据需在现场及时计算处理,计算有问题可及时复测,尽量做到当天报表当天出。因为基坑开挖是一个动态的施工过程,只有保证及时监测,才能有利于及时发现隐患,及时采取措施。

7.埋设于结构中的监测元件应尽量减少对结构的正常受力的影响,埋设水土压力监测元件、测斜管和分层沉降管时的回填土应注意与土介质的匹配。

8.对重要的监测项目,应按照工程具体情况预先设定预警值和报警制度,预警值应包括变形或内力量值及其变化速率。但目前对警戒值的确定还缺乏统一的定量化指标和判别准则,这在一定程度上限制和削弱了报警的有效性。

9.基坑监测应整理完整的监测记录表、数据报表、形象的图表和曲线,监测结束后整理出监测报告。

基坑监测文献

2.2基坑监测 2.2基坑监测

格式:pdf

大小:500KB

页数: 4页

评分: 4.4

1 2.2基坑监测 2.2.1基坑监测的目的 基坑监测是对基坑整个寿命期内对边坡稳定性进行监视,其对整个安全是有重大意义的,主要体现在: 1、实际意义 能对边坡稳定状态及时预报,确保基坑内作业的人机、物安全,确保基坑周边建筑物安全 2、指导意义 对基坑支护的加固、补强以及选定支护方法。为基坑支护技术分析提供有效数据,以便总结经验和教训, 为今后工作作指导。 2.2.2基坑监测的内容与安全措施 现场监测是指在基坑开挖及地下工程施工过程中,对基坑岩土性状、支护结构变位和 周围环境条件的 变化,进行各种观测及分析工作,并将观测结果及时反馈,以指导设计与 施工。 支护结构设计图纸应根据工程的具体情况提出对现场监测的要求,包括观测项目、测 点布置、观测精 度、观测频度和临界状态报警值等。 1.在基坑开挖前制定现场监测方案,主要内容包括测点布置、观测方法、监测项目报警值、监测结果处理 要求和监测结果

立即下载
基坑监测手册 基坑监测手册

格式:pdf

大小:500KB

页数: 40页

评分: 4.3

第29章 基坑监测与信息化施工 29.1 概述 众所周知, 基坑工程是一门实践性很强的学科。 由于岩土体性质的复杂多变性及各种计 算模型的局限性, 很多基坑工程的理论计算结果与实测数据往往有较大差异。 鉴于上述情况, 在工程设计阶段就准确无误地预测基坑支护结构和周围土体在施工过程中的变化是不现实 的,施工过程中如果出现异常, 且这种变化又没有被及时发现并任其发展, 后果将不堪设想。 据统计多起国内外重大基坑工程事故在发生前监测数据都有不同程度的异常反映, 但均未得 到充分重视而导致了严重的后果。 近年来,基坑工程信息化施工受到了越来越广泛的重视。为保证工程安全顺利地进行, 在基坑开挖及结构构筑期间开展严密的施工监测是很有必要的, 因为监测数据可以称为工程 的“体温表”,不论是安全还是隐患状态都会在数据上有所反映。从某种意义上施工监测也 可以说是一次 1:1 的岩土工程原型试验,所取得的

立即下载

监测项目

4.1 一 般 规 定

4.1.1 基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法。

4.1.2 基坑工程现场监测的对象包括:

1 支护结构;

2 相关的自然环境;

3 施工工况;

4 地下水状况;

5 基坑底部及周围土体;

6 周围建(构)筑物;

7 周围地下管线及地下设施;

8 周围重要的道路;

9 其他应监测的对象。

4.1.3 基坑工程的监测项目应抓住关键部位,做到重点观测、项目配套,形成有效的、完整的监测系统。监测项目尚应与基坑工程设计方案、施工工况相配套。

4.2 仪 器 监 测

4.2.1 基坑工程仪器监测项目应根据表4.2.1进行选择。

4.2.2 当基坑周围有地铁、隧道或其它对位移(沉降)有特殊要求的建(构)筑物及设施时,具体监测项目应与有关部门或单位协商确定。

4.3 巡 视 检 查

4.3.1 基坑工程整个施工期内,每天均应有专人进行巡视检查。

4.3.2 基坑工程巡视检查应包括以下主要内容:

1 支护结构

(1)支护结构成型质量;

(2) 冠梁、支撑、围檩有无裂缝出现;

(3)支撑、立柱有无较大变形;

(4)止水帷幕有无开裂、渗漏;

(5)墙后土体有无沉陷、裂缝及滑移;

(6)基坑有无涌土、流砂、管涌。

2 施工工况

(1)开挖后暴露的土质情况与岩土勘察报告有无差异;

(2)基坑开挖分段长度及分层厚度是否与设计要求一致,有无超长、超深开挖;

(3)场地地表水、地下水排放状况是否正常,基坑降水、回灌设施是否运转正常;

(4)基坑周围地面堆载情况,有无超堆荷载。

3 基坑周边环境

(1)地下管道有无破损、泄露情况;

(2)周边建(构)筑物有无裂缝出现;

(3)周边道路(地面)有无裂缝、沉陷;

(4)邻近基坑及建(构)筑物的施工情况。

4 监测设施

(1)基准点、测点完好状况;

(2)有无影响观测工作的障碍物;

(3)监测元件的完好及保护情况。

5 根据设计要求或当地经验确定的其他巡视检查内容。

4.3.4 巡视检查的检查方法以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行。

4.3.5 巡视检查应对自然条件、支护结构、施工工况、周边环境、监测设施等的检查情况进行详细记录。如发现异常,应及时通知委托方及相关单位。

4.3.6 巡视检查记录应及时整理,并与仪器监测数据综合分析。

监 测 点 布 置

5.1 一 般 规 定

5.1.1 基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。

5.1.2 基坑工程监测点的布置应不妨碍监测对象的正常工作,并尽量减少对施工作业的不利影响。

5.1.3 监测标志应稳固、明显、结构合理,监测点的位置应避开障碍物,便于观测。

5.1.4 在监测对象内力和变形变化大的代表性部位及周边重点监护部位,监测点应适当加密。

5.1.5 应加强对监测点的保护,必要时应设置监测点的保护装置或保护设施。

5.2 基 坑 及 支 护 结 构

5.2.1 基坑边坡顶部的水平位移和竖向位移监测点应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在基坑边坡坡顶上。

5.2.2 围护墙顶部的水平位移和竖向位移监测点应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在冠梁上。

5.2.3 深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。 当用测斜仪观测深层水平位移时,设置在围护墙内的测斜管深度不宜小于围护墙的入土深度;设置在土体内的测斜管应保证有足够的入土深度,保证管端嵌入到稳定的土体中。

5.2.4 围护墙内力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。

5.2.5 支撑内力监测点的布置应符合下列要求:

1 监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用的杆件上;

2 每道支撑的内力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致;

3 钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位;

4 每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。

5.2.6 立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、地质条件复杂处的立柱上,监测点不宜少于立柱总根数的10%,逆作法施工的基坑不宜少于20%,且不应少于5根。

5.2.7 锚杆的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。每层监测点在竖向上的位置宜保持一致。每根杆体上的测试点应设置在锚头附近位置。

5.2.8 土钉的拉力监测点应沿基坑周边布置,基坑周边中部、阳角处宜布置监测点。监测点水平间距不宜大于30m,每层监测点数目不应少于3个。各层监测点在竖向上的位置宜保持一致。每根杆体上的测试点应设置在受力、变形有代表性的位置。

5.2.9 基坑底部隆起监测点应符合下列要求:

1 监测点宜按纵向或横向剖面布置,剖面应选择在基坑的中央、距坑底边约1/4坑底宽度处以及其他能反映变形特征的位置。数量不应少于2个。纵向或横向有多个监测剖面时,其间距宜为20~50m,下部宜加密。

2 同一剖面上监测点横向间距宜为10~20m,数量不宜少于3个。

3 当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部。

5.2.10 孔隙水压力监测点宜布置在基坑受力、变形较大或有代表性的部位。监测点竖向布置宜在水压力变化影响深度范围内按土层分布情况布设,监测点竖向间距一般为2~5m,并不宜少于3个。

5.2.11 基坑内地下水位监测点的布置应符合下列要求: 1 当采用深井降水时,水位监测点宜布置在基坑中央和两相邻降水井的中间部位;当采用轻型井点、喷射井点降水时,水位监测点宜布置在基坑中央和周边拐角处,监测点数量视具体情况确定; 2 水位监测管的埋置深度(管底标高)应在最低设计水位之下3~5m。对于需要降低承压水水位的基坑工程,水位监测管埋置深度应满足降水设计要求。 3 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。

4 回灌井点观测井应设置在回灌井点与被保护对象之间。

5.3 周 边 环 境

5.3.1 从基坑边缘以外1~3倍开挖深度范围内需要保护的建(构)筑物、地下管 线等均应作为监控对象。必要时,尚应扩大监控范围。

5.3.2 位于重要保护对象(如地铁、上游引水、合流污水等)安全保护区范围内的监测点的布置,尚应满足相关部门的技术要求。

5.3.3 建(构)筑物的竖向位移监测点布置应符合下列要求:

1 建(构)筑物四角、沿外墙每10~15m处或每隔2~3根柱基上,且每边不少于3个监测点;

2 不同地基或基础的分界处;

3 建(构)筑物不同结构的分界处;

4 变形缝、抗震缝或严重开裂处的两侧;

5 新、旧建筑物或高、低建筑物交接处的两侧;

6 烟囱、水塔和大型储仓罐等高耸构筑物基础轴线的对称部位,每一构筑物不得少于4点。

5.3.4 建(构)筑物的水平位移监测点应布置在建筑物的墙角、柱基及裂缝的两端,每侧墙体的监测点不应少于3处。

5.3.5 建(构)筑物倾斜监测点应符合下列要求:

1 监测点宜布置在建(构)筑物角点、变形缝或抗震缝两侧的承重柱或墙上;

2 监测点应沿主体顶部、底部对应布设,上、下监测点应布置在同一竖直线上;

3 当采用铅锤观测法、激光铅直仪观测法时,应保证上、下测点之间具有一定的通视条件。

5.3.6 建(构)筑物的裂缝监测点应选择有代表性的裂缝进行布置,在基坑施工期间当发现新裂缝或原有裂缝有增大趋势时,应及时增设监测点。每一条裂缝的测点至少设2组,裂缝的最宽处及裂缝末端宜设置测点。

5.3.7 地下管线监测点的布置应符合下列要求:

1 应根据管线年份、类型、材料、尺寸及现状等情况,确定监测点设置;

2 监测点宜布置在管线的节点、转角点和变形曲率较大的部位,监测点平面间距宜为15~25m,并宜延伸至基坑以外20m;

3 上水、煤气、暖气等压力管线宜设置直接监测点。直接监测点应设置在管线上,也可以利用阀门开关、抽气孔以及检查井等管线设备作为监测点;

4 在无法埋设直接监测点的部位,可利用埋设套管法设置监测点,也可采用模拟式测点将监测点设置在靠近管线埋深部位的土体中。

5.3.8 基坑周边地表竖向沉降监测点的布置范围宜为基坑深度的1~3倍,监测剖面宜设在坑边中部或其他有代表性的部位,并与坑边垂直,监测剖面数量视具体情况确定。每个监测剖面上的监测点数量不宜少于5个。

5.3.9 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。同一监测孔的测点宜沿竖向布置在各层土内,数量与深度应根据具体情况确定,在厚度较大的土层中应适当加密。

监测方法及精度要求

6.1 一般规定

6.1.1 监测方法的选择应根据基坑等级、精度要求、设计要求、场地条件、地区经验和方法适用性等因素综合确定,监测方法应合理易行。

6.1.2 变形测量点分为基准点、工作基点和变形监测点。其布设应符合下列要求:

1 每个基坑工程至少应有3个稳固可靠的点作为基准点;

2 工作基点应选在稳定的位置。在通视条件良好或观测项目较少的情况下,可不设工作基点,在基准点上直接测定变形监测点;

3 施工期间,应采用有效措施,确保基准点和工作基点的正常使用;

4 监测期间,应定期检查工作基点的稳定性。

6.1.3 监测仪器、设备和监测元件应符合下列要求:

1 满足观测精度和量程的要求;

2 具有良好的稳定性和可靠性;

3 经过校准或标定,且校核记录和标定资料齐全,并在规定的校准有效期内;

6.1.4 对同一监测项目,监测时宜符合下列要求:

1 采用相同的观测路线和观测方法;

2 使用同一监测仪器和设备;

3 固定观测人员;

4 在基本相同的环境和条件下工作。

6.1.5 监测过程中应加强对监测仪器设备的维护保养、定期检测以及监测元件的检查;应加强对监测仪标的保护,防止损坏。

6.1.6 监测项目初始值应为事前至少连续观测3次的稳定值的平均值。

6.1.7 除使用本规范规定的各种基坑工程监测方法外,亦可采用能达到本规范规定精度要求的其他方法。

6.2 水平位移监测

6.2.1 测定特定方向上的水平位移时可采用视准线法、小角度法、投点法等;测定监测点任意方向的水平位移时可视监测点的分布情况,采用前方交会法、自由设站法、极坐标法等;当基准点距基坑较远时,可采用GPS测量法或三角、三边、边角测量与基准线法相结合的综合测量方法。

6.2.2 水平位移监测基准点应埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点,不应埋设在低洼积水、湿陷、冻胀、胀缩等影响范围内;基准点的埋设应按有关测量规范、规程执行。宜设置有强制对中的观测墩;采用精密的光学对中装置,对中误差不宜大于0.5mm。

6.2.3 基坑围护墙(坡)顶水平位移监测精度应根据围护墙(坡)顶水平位移报警值按表6.2.3确定。

6.2.4 地下管线的水平位移监测精度宜不低于1.5mm。

6.2.5 其他基坑周边环境(如地下设施、道路等)的水平位移监测精度应符合相关规范、规程等的规定。

6.3 竖向位移监测

6.3.1 竖向位移监测可采用几何水准或液体静力水准等方法。

6.3.2 坑底隆起(回弹)宜通过设置回弹监测标,采用几何水准并配合传递高程的辅助设备进行监测,传递高程的金属杆或钢尺等应进行温度、尺长和拉力等项修正。

6.3.3 基坑围护墙(坡)顶、墙后地表与立柱的竖向位移监测精度应根据竖向位移报警值按表6.3.3确定。

6.3.4 地下管线的竖向位移监测精度宜不低于0.5mm。

6.3.5 其他基坑周边环境(如地下设施、道路等)的竖向位移监测精度应符合相关规范、规程的规定。

6.3.6 坑底隆起(回弹)监测精度不宜低于1mm。

6.3.7 各等级几何水准法观测时的技术要求应符合表6.3.7的要求。

6.3.8 水准基准点宜均匀埋设,数量不应少于3点,埋设位置和方法要求与6.2.2相同。

6.3.9 各监测点与水准基准点或工作基点应组成闭合环路或附合水准路线。

6.4 深层水平位移监测

6.4.1 围护墙体或坑周土体的深层水平位移的监测宜采用在墙体或土体中预埋测斜管、通过测斜仪观测各深度处水平位移的方法。

6.4.2 测斜仪的系统精度不宜低于0.25mm/m,分辨率不宜低于0.02mm/500mm

6.4.3 测斜管应在基坑开挖1周前埋设,埋设时应符合下列要求:

1 埋设前应检查测斜管质量,测斜管连接时应保证上、下管段的导槽相互对准顺畅,接头处应密封处理,并注意保证管口的封盖;

2 测斜管长度应与围护墙深度一致或不小于所监测土层的深度;当以下部管端作为位移基准点时,应保证测斜管进入稳定土层2~3m;测斜管与钻孔之间孔隙应填充密实;

3 埋设时测斜管应保持竖直无扭转,其中一组导槽方向应与所需测量的方向一致。

6.4.4 测斜仪应下入测斜管底5~10min,待探头接近管内温度后再量测,每个监测方向均应进行正、反两次量测。

6.4.5 当以上部管口作为深层水平位移的起算点时,每次监测均应测定管口坐标的变化并修正。

6.5 倾斜监测

6.5.1 建筑物倾斜监测应测定监测对象顶部相对于底部的水平位移与高差,分别记录并计算监测对象的倾斜度、倾斜方向和倾斜速率。

6.5.2 应根据不同的现场观测条件和要求,选用投点法、水平角法、前方交会法、正垂线法、差异沉降法等。

6.5.3 建筑物倾斜监测精度应符合《工程测量规范》(GB50026)及《建筑变形测量规程》(JGJ/T8)的有关规定。

6.6 裂缝监测

6.6.1 裂缝监测应包括裂缝的位置、走向、长度、宽度及变化程度,需要时还包括深度。裂缝监测数量根据需要确定,主要或变化较大的裂缝应进行监测。

6.6.2 裂缝监测可采用以下方法:

1 对裂缝宽度监测,可在裂缝两侧贴石膏饼、划平行线或贴埋金属标志等,采用千分尺或游标卡尺等直接量测的方法;也可采用裂缝计、粘贴安装千分表法、摄影量测等方法。

2 对裂缝深度量测,当裂缝深度较小时宜采用凿出法和单面接触超声波法监测;深度较大裂缝宜采用超声波法监测。

6.6.3 应在基坑开挖前记录监测对象已有裂缝的分布位置和数量,测定其走向、长度、宽度和深度等情况,标志应具有可供量测的明晰端面或中心。

6.6.4 裂缝宽度监测精度不宜低于0.1mm,长度和深度监测精度不宜低于1mm。

6.7 支护结构内力监测

6.7.1 基坑开挖过程中支护结构内力变化可通过在结构内部或表面安装应变计或应力计进行量测。

6.7.2 对于钢筋混凝土支撑,宜采用钢筋应力计(钢筋计)或混凝土应变计进行量测;对于钢结构支撑,宜采用轴力计进行量测。

6.7.3 围护墙、桩及围檩等内力宜在围护墙、桩钢筋制作时,在主筋上焊接钢筋应力计的预埋方法进行量测。

6.7.4 支护结构内力监测值应考虑温度变化的影响,对钢筋混凝土支撑尚应考虑混凝土收缩、徐变以及裂缝开展的影响。

6.7.5 应力计或应变计的量程宜为最大设计值的1.2倍,分辨率不宜低于0.2%F·S,精度不宜低于0.5%F·S。

6.7.6 围护墙、桩及围檩等的内力监测元件宜在相应工序施工时埋设并在开挖前取得稳定初始值。

6.8 土压力监测

6.8.1 土压力宜采用土压力计量测。

6.8.2 土压力计的量程应满足被测压力的要求,其上限可取最大设计压力的1.2倍,精度不宜低于0.5%F·S,分辨率不宜低于0.2%F·S。

6.8.3 土压力计埋设可采用埋入式或边界式(接触式)。埋设时应符合下列要求:

1 受力面与所需监测的压力方向垂直并紧贴被监测对象;

2 埋设过程中应有土压力膜保护措施;

3 采用钻孔法埋设时,回填应均匀密实,且回填材料宜与周围岩土体一致。

4 做好完整的埋设记录。

6.8.4 土压力计埋设以后应立即进行检查测试,基坑开挖前至少经过1周时间的监测并取得稳定初始值。

6.9 孔隙水压力监测

6.9.1 孔隙水压力宜通过埋设钢弦式、应变式等孔隙水压力计,采用频率计或应变计量测。

6.9.2 孔隙水压力计应满足以下要求:量程应满足被测压力范围的要求,可取静水压力与超孔隙水压力之和的1.2倍;精度不宜低于0.5%F·S,分辨率不宜低于0.2%F·S。

6.9.3 孔隙水压力计埋设可采用压入法、钻孔法等。

6.9.4 孔隙水压力计应在事前2~3周埋设,埋设前应符合下列要求:

1 孔隙水压力计应浸泡饱和,排除透水石中的气泡;

2 检查率定资料,记录探头编号,测读初始读数。

6.9.5 采用钻孔法埋设孔隙水压力计时,钻孔直径宜为110~130mm,不宜使用泥浆护壁成孔,钻孔应圆直、干净;封口材料宜采用直径10~20mm的干燥膨润土球

6.9.6 孔隙水压力计埋设后应测量初始值,且宜逐日量测1周以上并取得稳定初始值。

6.9.7 应在孔隙水压力监测的同时测量孔隙水压力计埋设位置附近的地下水位。

6.10 地下水位监测

6.10.1 地下水位监测宜采通过孔内设置水位管,采用水位计等方法进行测量。

6.10.2 地下水位监测精度不宜低于10mm。

6.10.3 检验降水效果的水位观测井宜布置在降水区内,采用轻型井点管降水时可布置在总管的两侧,采用深井降水时应布置在两孔深井之间,水位孔深度宜在最低设计水位下2~3m。

6.10.4 潜水水位管应在基坑施工前埋设,滤管长度应满足测量要求;承压水位监测时被测含水层与其他含水层之间应采取有效的隔水措施。

6.10.5 水位管埋设后,应逐日连续观测水位并取得稳定初始值。

6.11 锚杆拉力监测

6.11.1 锚杆拉力量测宜采用专用的锚杆测力计,钢筋锚杆可采用钢筋应力计或应变计,当使用钢筋束时应分别监测每根钢筋的受力。

6.11.2 锚杆轴力计、钢筋应力计和应变计的量程宜为设计最大拉力值的1.2倍,量测精度不宜低于0.5%F·S,分辨率不宜低于0.2%F·S。

6.11.3 应力计或应变计应在锚杆锁定前获得稳定初始值。

6.12 坑外土体分层竖向位移监测

6.12.1 坑外土体分层竖向位移可通过埋设分层沉降磁环或深层沉降标,采用分层沉降仪结合水准测量方法进行量测。

6.12.2 分层竖向位移标应在事前埋设。沉降磁环可通过钻孔和分层沉降管进行定位埋设。

6.12.3 土体分层竖向位移的初始值应在分层竖向位移标埋设稳定后进行,稳定时间不应少于1周并获得稳定的初始值;监测精度不宜低于1mm。

6.12.4 每次测量应重复进行2次,2次误差值不大于1mm。

6.12.5 采用分层沉降仪法监测时,每次监测应测定管口高程,根据管口高程换算出测管内各监测点的高程。

监测频率

7.0.1 基坑工程监测频率应以能系统反映监测对象所测项目的重要变化过程,而又不遗漏其变化时刻为原则。

7.0.2 基坑工程监测工作应贯穿于基坑工程和地下工程施工全过程。监测工作一般应从基坑工程施工前开始,直至地下工程完成为止。对有特殊要求的周边环境的监测应根据需要延续至变形趋于稳定后才能结束。

7.0.3 监测项目的监测频率应考虑基坑工程等级、基坑及地下工程的不同施工阶段以及周边环境、自然条件的变化。当监测值相对稳定时,可适当降低监测频率。对于应测项目,在无数据异常和事故征兆的情况下,开挖后仪器监测频率的确定可参照表7.0.3。

7.0.4 当出现下列情况之一时,应加强监测,提高监测频率,并及时向委托方及相关单位报告监测结果:

1.监测数据达到报警值;

2.监测数据变化量较大或者速率加快;

3.存在勘察中未发现的不良地质条件;

4.超深、超长开挖或未及时加撑等未按设计施工;

5.基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏;

6.基坑附近地面荷载突然增大或超过设计限值;

7.支护结构出现开裂;

8.周边地面出现突然较大沉降或严重开裂;

9.邻近的建(构)筑物出现突然较大沉降、不均匀沉降或严重开裂;

10.基坑底部、坡体或支护结构出现管涌、渗漏或流砂等现象;

11.基坑工程发生事故后重新组织施工;

12.出现其他影响基坑及周边环境安全的异常情况。

7.0.5 当有危险事故征兆时,应实时跟踪监测。

监测报警

8.0.1 基坑工程监测报警值应符合基坑工程设计的限值、地下主体结构设计要求以及监测对象的控制要求。基坑工程监测报警值由基坑工程设计方确定。

8.0.2 基坑工程监测报警值应以监测项目的累计变化量和变化速率值两个值控制。

8.0.3 因围护墙施工、基坑开挖以及降水引起的基坑内外地层位移应按下列条件控制:

1 不得导致基坑的失稳;

2 不得影响地下结构的尺寸、形状和地下工程的正常施工;

3 对周边已有建(构)筑物引起的变形不得超过相关技术规范的要求;

4 不得影响周边道路、地下管线等正常使用;

5 满足特殊环境的技术要求。

8.0.4 基坑及支护结构监测报警值应根据监测项目、支护结构的特点和基坑等级确定,可参考表8.0.4。

注:

1.h - 基坑设计开挖深度;f - 设计极限值。 2.累计值取绝对值和相对基坑深度(h)控制值两者的小值。 3.当监测项目的变化速率连续3天超过报警值的50%,应报警。

8.0.5 周边环境监测报警值的限值应根据主管部门的要求确定,如无具体规定,可参考表8.0.5确定。

8.0.6 周边建(构)筑物报警值应结合建(构)筑物裂缝观测确定,并应考虑建(构)筑物原有变形与基坑开挖造成的附加变形的叠加。

8.0.7 当出现下列情况之一时,必须立即报警;若情况比较严重,应立即停止施工,并对基坑支护结构和周边的保护对象采取应急措施。

1 当监测数据达到报警值;

2 基坑支护结构或周边土体的位移出现异常情况或基坑出现渗漏、流砂、管涌、隆起或陷落等;

3 基坑支护结构的支撑或锚杆体系出现过大变形、压屈、断裂、松弛或拔出的迹象;

4 周边建(构)筑物的结构部分、周边地面出现可能发展的变形裂缝或较严重的突发裂缝;

5 根据当地工程经验判断,出现其他必须报警的情况。

数据处理

9.0.1 监测分析人员应具有岩土工程与结构工程的综合知识,具有设计、施工、测量等工程实践经验,具有较高的综合分析能力,做到正确判断、准确表达,及时提供高质量的综合分析报告。

9.0.2 现场测试人员应对监测数据的真实性负责,监测分析人员应对监测报告的可靠性负责,监测单位应对整个项目监测质量负责。监测记录和监测技术成果均应有负责人签字,监测技术成果应加盖成果章。

9.0.3 现场的监测资料应符合下列要求:

1 使用正式的监测记录表格;

2 监测记录应有相应的工况描述;

3 监测数据应及时整理;

4 对监测数据的变化及发展情况应及时分析和评述。

9.0.4 外业观测值和记事项目,必须在现场直接记录于观测记录表中。任何原始记录不得涂改、伪造和转抄,并有测试、记录人员签字。

9.0.5 观测数据出现异常,应及时分析原因,必要时进行重测

9.0.6 监测项目数据分析时,应结合其他相关项目的监测数据和自然环境、施工工况等情况以及以往数据进行,考量其发展趋势,并做出预报。

9.0.7 技术成果应包括当日报表、阶段性报告、总结报告。技术成果提供内容应真实、准确、完整,并应用文件阐述与绘画宜用变化曲线或图形相结合的形式表达。技术成果应按时报送。

9.0.8 监测数据的处理与信息反馈宜采用专业软件,专业软件的功能好参数应符合本规范的有关规定,并宜具备数据采集、处理、分析、查询好管理一体化以及监测成果可视化的功能。

9.0.9 基坑工程监测的观测记录、计算资料好技术成果应进行组卷、归档。

9.0.10 当日报表应包括下列内容:

1 当日的天气情况和施工现场的工况;

2 仪器监测项目各监测点的本次测试值、单次变化值、变化速率以及累计值等,必要时绘制有关曲线图;

3 巡视检查的记录;

4 对监测项目应有正常或异常的判断性结论;

5 对达到或超过监测报警值的监测点应有报警标示,并有原因分析及建议;

6 对巡视检查发现的异常情况应有详细描述,危险情况应有报警标示,并有原因分析及建议;

7 其他相关说明。

当日报表宜采用本规范附录A ~附录G的样式。

9.0.11 阶段性监测报告应包括下列内容:

1 该监测期相应的工程、气象及周边环境概况;

2 该监测期的监测项目及测点的布置图;

3 各项监测数据的整理、统计及监测成果的过程曲线;

4 各监测项目监测值的变化分析、评价及发展预测;

5 相关的设计和施工建议。

9.0.12 基坑工程监测总结报告的内容应包括:

1 工程概况;

2 监测依据;

3 监测项目;

4 测点布置;

5 监测设备和监测方法;

6 监测频率;

7 监测报警值;

8 各监测项目全过程的发展变化分析及整体评述;

9 监测工作结论与建议。

9.0.13 总结报告应标明工程名称、监测单位、整个监测工作的起止日期,并应有监测单位章及项目负责人、单位技术负责人、企业行政负责人签字。新工人进场时,三级安全教育到位;班前安全技术交底到位;施工过程中的监督、检查、再教育、考核工作到位;班后总结和改进工作到位。

基坑工程是大型的土体开挖工程,其最直接的后果是引起周围土体应力应变的重分布,导致周围地层的移动,产生较大的地表沉降与不均匀沉降,对周围建筑环境不利。现今的基坑工程正向着“深、难、险、大”方向发展,对环境的影响也日益严重。本文针对3DGIS、BIM技术在基坑监测应用进行探讨。

1.背景

深基坑开挖不但要保证基坑自身的安全与稳定,而且要有效控制基坑周围地层移动以保护周边环境。一则由于地下20米深度内的地层多属于软弱的粘性土,土强度低,含水量高,有很大的流变性,在这类地层进行深基坑开挖和施工,极易产生较大的地层移动;再者由于城市中深基坑周边常碰到重要的市政设施(如地铁、隧道、管沟等)、浅基础民宅等,这些建筑大多是结构差、设施陈旧,对变形的反应较为敏感。

基坑工程的监测技术是指基坑在开挖施工过程中,用科学仪器、设备和手段对支护系统、周边环境(如土体,建筑物,道路,地下设施等)的位移、倾斜、沉降、应力、开裂、基底隆起以及地下水位的动态变化、土层孔隙水压力变化等进行综合监测。然后,根据开挖期间监测到的结构和土体变位等各种信息,对勘察、设计所预期的性状与监测结果及时比较,对原设计进行评价并判断施工方案的合理性,修正原设计的不足,预测下一段施工可能出现的新行为、新动态,为进行合理组织施工提供可靠的信息,对后续的开挖方案与开挖步骤提出建议,对施工过程中可能出现的险情进行及时的预报,当发现有异常情况时立即采取必要的工程措施,将问题抑制在萌芽状态,以确保基坑工程的安全施工。

2.系统方案

基于3DGIS技术、BIM技术、虚拟现实技术和基坑综合监控系统、三维有限元开挖模拟与分析技术,以及基坑周边的地理空间信息,开发基于深基坑4D监测系统,提升基坑施工过程的可视化、精细化管理水平和工作效率,将安全隐患消灭在萌芽状态、杜绝安全事故的发生,为保障工程施工质量和施工进度提供技术支撑。

基于BIM技术的深基坑施工4D监控系统是与深基坑施工工况相结合的深基坑三维模型显示监测系统,通过计算机三维显示技术实现深基坑施工工况的参数化模拟,由三维图形能直观的表达出深基坑及其周边环境各监测点随施工工况变化的监测数据历时情况,体现了监测数据的时空效应,同时通过计算机互联网实现了深基坑监测数据的分布式管理,并能根据监测的数据计算预测下一步工程施工时深基坑及其周边环境的安全,能极大方便了各级管理与技术人员对监测数据的管理与分析,进而能较迅速与准确的判定与反馈深基坑的安全状态,指导深基坑施工。

图1基坑4D施工监测系统总架构图

采集层主要包括人工录入和系统集成。其中动态监测数据是可以通过人工获取监测器采集来的数据录入到本系统中,也可以将在线监测系统通过网络接入本系统;静态模型数据可以通过平台维护管理员在系统初始化中导入,同时支持开发数据接口,导入已经完成电子化的数据;BIM模型通过平台工具转换处理后导入到系统,3DS模型可直接添加到系统,基坑监测系统和视频监控则是将第三方网络视频监控系统集成到本平台上。

数据层主要包括业务应用数据库和地理空间数据两类数据库。其中业务应用数据库包含系统管理和业务应用产生的各类数据:静态模型信息数据库,动态模拟仿真数据库,动态监测数据库,操作日志数据库,用户权限数据库等;地理空间数据库包含构建整个数字地球三维场景的各类基础数据:遥感影像数据,矢量地图数据,数字高程模型数据,BIM模型数据库,建筑三维数据库。

平台层即整个系统的三维地理空间信息支撑平台,包含:空间数据构建子系统,空间数据服务子系统,和空间数据承载应用子系统。平台层通过各类地理空间数据的融合处理以及业务员数据的组织调用,在3D数字地球引擎软件的支撑下创建真实的深基坑施工状态仿真与监测平台。

应用层由:系统管理模块,业务应用模块,二部分构成。

(1)系统管理模块:

主要包括用户管理,基于用户角色的访问权限控制,日志管理和查询等功能构成。

(2)业务应用模块:

基坑地上地下无缝三维浏览:通过鼠标拖拽和键盘操作,实现地面与地下的无缝自由三维浏览漫游。

静态数据展示:在三维场景中,通过拉框、圈选、点选、模糊查询、缓冲区查询等方式,对选取区域内模型的静态数据进行查询和定位。根据实际应用需要,提供距离量测、坐标和标高输出等辅助功能。

动态数据展示:可以通过录入窗口编辑指定模型的动态数据,通过模型的形状,位置,颜色的改变实时体现模型数据状态,通过拉框、圈选、点选、模糊查询、缓冲区查询等方式,对选取区域内模型的动态数据进行查询和定位;可沿时间轴展示上述信息发展的变化历程,可追溯任意历史时间点的信息数据并展示;根据实际应用需要,提供地面沉降量(体积)的统计、各类变形监测数据的二维曲线图等辅助功能;根据实际应用需要,展示地面、地下作业面的实时监控视频画面的相关信息。

动态报警功能:可以预设动态数据的状态值区间,比如地面沉降0~0.01cm为正常,0.01~0.02为轻微沉降,0.02~0.03严重沉降等,当动态数据达到非正常状态时,系统可通过改变动态数据相应模型的颜色,警告列表和及时定位的形式实现动态报警功能。

1.系统功能

◆场景浏览漫游:二维地形和三维场景的浏览漫游;支持自定义和手动路径的浏览漫游,以及以第1人称视角和飞行视角进行浏览漫游;支持二维及三维状态的切换。

◆属性信息查询:支持以多种方式查询并展示地层信息,地下管线信息,地面道路、建筑等环境信息;

◆施工模拟仿真:在加载了各类静态信息的三维平台上,模拟建设进度、基坑结构变形(沉降和收敛)、周边地面沉降形态、管线变形沉降、周边重要建筑物的沉降倾斜等监测数据,并进行应用仿真;

◆施工动态监测:支持以多种方式查询并展示建设进度、结构变形(沉降和收敛)、周边地面沉降形态、管线变形沉降、周边重要建筑物的沉降倾斜等监测数据;

◆空间量测分析:提供距离量测、面积量测、高度量测、坐标获取和标高输出等辅助功能;根据实际应用需要,提供地面沉降量(体积)的统计、各类变形监测数据的二维曲线图等辅助功能;

◆实时视频监控:根据实际应用需要,接入展示地面、地下作业面的实时监控视频画面的相关信息等;

◆历史数据查询:可沿时间轴展示建设进度、结构变形(沉降和收敛)、周边地面沉降形态、管线变形沉降、周边重要建筑物的沉降倾斜等监测数据发展的变化历程,可追溯任意历史时间点的信息数据并展示;

◆监测分析报警:分析各类变形监测数据的发展规律,采用颜色或其他指示方式动态反应各类监测对象的预警状态(如蓝色、黄色、橙色、红色预警级别),当监测数据达到某一警戒值时,提供图形化报警功能。

3.结束语

基于3DGIS、BIM技术的施工优化与监测数据管理分析系统,将非常有利于保证深基坑项目的顺利实施,把基坑施工的风险减小到最低程度,从技术上保证方案的优化,对基坑的施工将起到关键性的作用,深基坑信息化施工也将近一步的提高。

(作者:陈铁军)

下列地铁车站明挖基坑监测项目中,属于A类监测项目的有(   )。

A、地下管线沉降

B、地下水位

C、土体水平位移

D、地表沉降

E、支撑轴力

【正确答案】ADE

【答案解析】本题考查的是明挖基坑监测内容及方法。明挖基坑A类监测项目有:地表沉降、地下管线沉降、围护桩顶垂直位移、建筑物沉降、建筑物倾斜、围护桩水平位移、支撑轴力、锚固力。参见教材P272。

基坑监测相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏