陶瓷电容器

陶瓷电容器(ceramic capacitor;ceramic condenser )又称为瓷介电容器或独石电容器。顾名思义,瓷介电容器就是介质材料为陶瓷的电容器。根据陶瓷材料的不同,可以分为低频陶瓷电容器和高频陶瓷电容器两类。按结构形式分类,又可分为圆片状电容器、管状电容器、矩形电容器、片状电容器、穿心电容器等多种。

陶瓷电容器基本信息

中文名 陶瓷电容器 外文名 ceramic capacitor
形    状 管形、圆形 类    型 电容器
介    质 陶瓷 应    用 电子工业、电路及各种电器

这几种是:Y5V,X5R,X7R,NPO(COG)

那么这些材质代表什么意思呢?第一位表示低温,第二位表示高温,第三位表示偏差

Y5V表示工作在-30~+85度,整个温度范围内偏差-82%~+22%

X5R表示工作在-55~+85度,整个温度范围内偏差正负15%

X7R表示工作在-55~+125度,整个温度范围内偏差正负15%

NPO(COG)是温度特性最稳定的电容器,电容温漂很小(什么是温漂?你上网查查),整个温度范围容量很稳定,温度也是-55~125度,适用于振荡器,超高频滤波去耦,但容量一般做不大,几千个pF吧。

陶瓷电容器造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
片式多层陶瓷电容器 型号 0603B103K500NT介质材料 陶瓷(介) 应用范围 调谐外形 叠片形 功率特性 中功率频率特性 中频 调节方式 固定引线类型 无引线 允许偏差 ±10(%)耐压值 50(V) 标称容量 10nF(uF)额定压 50(V) 查看价格 查看价格

风华

13% 武汉霖瑞电子科技有限公司
电容器 BSMJS-0-0.45-30-3-D 查看价格 查看价格

13% 重庆宇轩机电设备有限公司
电容器 品种:电容器;规格:18F×450V×105℃;说明:亚牌金属卤化物灯专用防爆;每箱数量:24;箱外尺寸:35×24×17;箱重:4.3;额 查看价格 查看价格

世纪亚明

13% 银川鑫宏记科技有限公司
电容器 品种:电容器;规格:30F×450V×105℃;说明:亚牌金属卤化物灯专用防爆;每箱数量:24;箱外尺寸:35×24×17;箱重:7.3;额 查看价格 查看价格

世纪亚明

13% 银川鑫宏记科技有限公司
电容器 品种:电容器;规格:13F×450V×105℃;说明:亚牌金属卤化物灯专用防爆;每箱数量:24;箱外尺寸:35×24×17;箱重:3.7;额 查看价格 查看价格

世纪亚明

13% 银川鑫宏记科技有限公司
电容器 品种:电容器;规格:26F×450V×105℃;说明:亚牌金属卤化物灯专用防爆;每箱数量:24;箱外尺寸:35×24×17;箱重:6.3;额 查看价格 查看价格

世纪亚明

13% 银川鑫宏记科技有限公司
电容器 品种:电容器;规格:28F×450V×105℃;说明:亚牌金属卤化物灯专用防爆;每箱数量:24;箱外尺寸:35×24×17;箱重:7;额定容 查看价格 查看价格

世纪亚明

13% 银川鑫宏记科技有限公司
电容器 品种:电容器;规格:50F×450V×105℃;说明:亚牌金属卤化物灯专用防爆;每箱数量:24;箱外尺寸:39×27×17;箱重:6.1;额 查看价格 查看价格

世纪亚明

13% 银川鑫宏记科技有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
荧光灯电容器 4.75mFb 查看价格 查看价格

十个 韶关市2010年2月信息价
荧光灯电容器 3.7mFb 查看价格 查看价格

十个 韶关市2009年10月信息价
荧光灯电容器 3.7mFb 查看价格 查看价格

十个 韶关市2009年6月信息价
荧光灯电容器 4.75mFb 查看价格 查看价格

十个 韶关市2009年6月信息价
荧光灯电容器 3.7mFb 查看价格 查看价格

十个 韶关市2009年4月信息价
荧光灯电容器 4.75mFb 查看价格 查看价格

十个 韶关市2009年2月信息价
荧光灯电容器 3.7mFb 查看价格 查看价格

十个 韶关市2008年12月信息价
荧光灯电容器 4.75mFb 查看价格 查看价格

十个 韶关市2008年12月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
片式多层陶瓷电容器 型号 0603B103K500NT介质材料 陶瓷(瓷介) 应用范围 调谐外形 叠片形 功率特性 中功率频率特性 中频 调节方式 固定引线类型 无引线 允许偏差 ±10(%)耐压值 50(V) 标称容量 10nF(uF)额定压 50(V)|4822k 1 查看价格 武汉霖瑞电子科技有限公司 湖北  武汉市 2015-04-30
电容器 BcmJ0.525-25-3|19只 1 查看价格 深圳威斯康电气有限公司 湖北   2022-09-16
电容器 BSMJ0.45-40-3|5只 1 查看价格 长江电气集团股份有限公司 湖北   2022-09-16
电容器 BcmJ0.48-50-3|6只 1 查看价格 深圳威斯康电气有限公司 湖北   2022-09-16
电容器 400W|3套 3 查看价格 常州飞蒲司照明电器有限公司 全国   2022-07-19
电容器 PSTN480-3-30×2|36个 1 查看价格 深圳市力量科技有限公司 全国   2022-05-09
电容器 ZTL-168GRF/450-20.20|18个 1 查看价格 锦州市电容器厂 全国   2020-03-31
电容器 15KVAR|8个 1 查看价格 佛山市迅景电气有限公司 全国   2019-08-26

陶瓷电容器分类

陶瓷电容器又分为高频瓷介电容器和低频瓷介电容器两种。具有小的正电容温度系数的电容器,用于高稳定振荡电路中,作为回路电容器。低频瓷介电容器用在对稳定性和损耗要求不高的 场合或工作频率较低的回路中起旁路或隔直流作用,它易被脉冲电压击穿,故不能使用在脉冲电路中。高频瓷介电容器适用于高频电路。

多层陶瓷电容器常见小缺陷的规避方法

因其小尺寸、低等效串联电阻(ESR)、低成本、高可靠性和高纹波电流能力,多层陶瓷 (MLC) 电容器在电源电子产品中变得极为普遍。一般而言,它们用在电解质电容器 leiu 中,以增强系统性能。相比使用电解电容器铝氧化绝缘材料时相对介电常数为 10 的电解质,MLC 电容器拥有高相对介电常数材料 (2000-3000) 的优势。这一差异很重要,因为电容直接与介电常数相关。在电解质的正端,设置板间隔的氧化铝厚度小于陶瓷材料,从而带来更高的电容密度。

温度和DC偏压变化时,陶瓷电容器介电常数不稳定,因此我们需要在设计过程中理解它的这种特性。高介电常数陶瓷电容器被划分为 2 类。图 1 显示了如何以 3 位数描述方法来对其分类,诸如:Z5U、X5R 和 X7R 等。例如,Z5U 电容器额定温度值范围为 +10 到 +85o C,其变化范围为 +22/–56%。再稳定的电介质也存在一定的温度电容变化范围。

图 1 :2类电介质使用 3 位数进行分类。注意观察其容差!

当我们研究偏压电容依赖度时,情况变得更加糟糕。图 2 显示了一个 22 uF、6.3伏、X5S 电容器的偏压依赖度。我们常常会把它用作一个 3.3 伏负载点 (POL) 稳压器的输出电容器。3.3 伏时电容降低 25%,导致输出纹波增加,从而对控制环路带宽产生巨大影响。如果您曾经在 5 伏输出时使用这种电容器,则在温度和偏压之间,电容降低达 60% 之多,并且由于 2:1 环路带宽增加,可能产生一个不稳定的电源。许多陶瓷电容器厂商都没有详细说明这一问题。

图 2:注意电容所施加偏压变化而降低

陶瓷电容器的第二个潜在缺陷是,它们具有相对较小的电容和低ESR。在频域和时域中,这会带来一些问题。如果它们被用作某个电源的输入滤波电容器,则它们很容易随输入互连电感谐振,形成一个振荡器。要想知道是否存在潜在问题,可将寄生互连电感估算为每英寸 15 nH,然后根据这两篇文章介绍的方法把滤波输出阻抗与电源输入电阻进行对比。第二个潜在问题存在于时域中,我们可在以太网电源 (POE) 等系统中看到它们的踪影。

在这些系统中,电源通过大互连电感连接至负载。负载通过一个开关实现开启,并可能会使用陶瓷电容器构建旁路。这种旁路电容器和互连电感可以形成一个高 Q谐振电路。由于负载电压振铃可以高达电源电压的两倍,因此在负载下关闭开关会形成一个过电压状态。这会引起意外电路故障。例如,在 POE 中,负载组件的额定电压变化可以高达电源额定电压的两倍。

第三个潜在缺陷的原因是陶瓷电容器为压电式。也就是说,当电容器电压变化时,其物理尺寸改变,从而产生可听见的噪声。例如,我们将这种电容器用作输出滤波电容器时(存在大负载瞬态电流),或者在"绿色"电源中,其在轻负载状态下进入突发模式。这种问题的变通解决方案如下:

· 转而使用更低介电常数的陶瓷材料,例如:COG 等。

· 使用不同的电介质,例如:薄膜等。

· 使用加铅和表面贴装技术 (SMT) 组件,可紧密贴合印制线路板 (PWB)。

· 使用更小体积器件,降低电路板应力。

· 使用更厚组件,降低施加电压应力和物理变形。

SMT陶瓷电容器存在的另一个问题是,在PWB弯曲时,由于电容器和 PWB 之间存在的热膨胀系数 (TCE) 错配,它们的软焊接头往往会裂开。您可以采取一些预防措施来减少这种问题的发生:

· 封装尺寸限制为 1210。

· 使电容器远离高曲率地区,例如:拐角区等。

· 使电容器朝向电路板短方向。

· 使电路板安装点远离边角。

· 在所有装配过程均注意可能出现的电路板弯曲。

总之,如果您注意其存在的一些小缺点,则相比电解电容器,多层陶瓷电容器拥有低成本、高可靠性、长寿命和小尺寸等优势。它们具有非常宽的电容容差范围,因此您需要对其温度和偏压变化范围内的性能进行评估。它们均为压电式,其意味着它们会在有脉冲电流的系统中产生可听见的噪声。最后,它们很容易出现破裂,因此我们必须采取预防措施来减少这一问题的发生。所有这些问题都有相应的解决办法。因此,MLC 电容器仍会变得越来越受欢迎。

它的外形以片式居多,也有管形、圆形等形状。

陶瓷电容器是以陶瓷材料为介质的电容器的总称。其品种繁多,外形尺寸相差甚大。按

使用电压可分为高压,中压和低压陶瓷电容器。按温度系数,介电常数不同可分为负温度系数、正温度系数、零温度系数、高介电常数、低介电常数等。此外,还有I型、II型、III型的分类方法。一般陶瓷电容器和其他电容器相比,具有使用温度较高,比容量大,耐潮湿性好,介质损耗较小,电容温度系数可在大范围内选择等优点。广泛用于电子电路中,用量十分可观。

陶瓷电容器常见问题

  • 陶瓷电容器原理是什么

    陶瓷电容的原理,用高介电常数的电容器陶瓷〈钛酸钡一氧化钛〉挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。它又分高频瓷介和低频瓷介两种。具有小的正电容温度系数的电容器,用于高稳定...

  • 多层陶瓷电容器特点有哪些?

    陶瓷电容器是以陶瓷材料为介质的电容器的总称。其品种繁多,外形尺寸相差甚大。一般陶瓷电容器和其他电容器相比,具有使用温度较高,比容量大,耐潮湿性好,介质损耗较小,电容温度系数可在大范围内选择等优点。广泛...

  • 多层陶瓷电容器报价有多贵

    多层陶瓷电容器适用于容量范围广,稳定性要求不高的电路中,如隔直、耦合、旁路及鉴频等电路中。参考价格1元左右

陶瓷电容器半导体陶瓷电容器

(1)表面层陶瓷电容器 电容器的微小型化,即电容器在尽可能小的体积内获得尽可能大的容量,这是电容器发展的趋向之一。对于分离电容器组件来说,微小型化的基本途径有两个:①使介质材料的介电常数尽可能提高;②使介质层的厚度尽可能减薄。在陶瓷材料中,铁电陶瓷的介电常数很高,但是用铁电陶瓷制造普通铁电陶瓷电容器时,陶瓷介质很难做得很薄。首先是由于铁电陶瓷的强度低,较薄时容易碎裂,难于进行实际生产操作,其次,陶瓷介质很薄时易于造成各种各样的组织缺陷,生产工艺难度很大。

表面层陶瓷电容器是用BaTiO3等半导体陶瓷的表面上形成的很薄的绝缘层作为介质层,而半导体陶瓷本身可视为电介质的串联回路。表面层陶瓷电容器的绝缘性表面层厚度,视形成方式和条件不同,波动于0.01~100μm之间。这样既利用了铁电陶瓷的很高的介电常数,又有效地减薄了介质层厚度,是制备微小型陶瓷电容器一个行之有效的方案。

右图(a)为表面层陶瓷电容器的一般结构,(b)为其等效电路。在半导体陶瓷表面形成表面介质层的方法很多,这里仅作简单介绍。在BaTiO3导体陶瓷的两个平行平面上烧渗银电极,银电极和半导体陶瓷的接触介面就会形成极薄的阻挡层。由于Ag是一种电子逸出功较大的金属,所以在电场作用下,BaTiO3导体陶瓷与Ag电极的接触介面上就会出现缺乏电子的阻挡层,而阻挡层本身存在着空间电荷极化,即介面极化。这样半导体陶瓷与Ag电极之间的这种阻挡层就构成了实际上的介质层。

这种电容器瓷件,先在大气气氛中烧成,然后在还原气氛中强制还原半导化,再在氧化气氛中把表面层重新氧化成绝缘性的介质层。再氧化层的厚度应控制适当。若氧化膜太薄,电极和陶瓷间仍可呈现pn结的整流特性,绝缘电阻和耐电强度都得不到改善。随着厚度的逐渐增加,pn结的整流特性消失,绝缘电阻提高,对直流偏压的依存性降低。但是,再氧化的时间不宜过长,否则可能导致陶瓷内部重新再氧化而使电容器的容量降低。还原处理的温度为800~1200℃,再氧化处理的温度为500~900℃。经还原处理后的陶瓷材料,绝缘电阻率可降至10~103Ω·cm,表面层的电阻率低于内部瓷体的电阻率;薄瓷片的电阻率,一般比处理条件相同的较厚瓷体的电阻率低一些。由于再氧化处理形成的表面绝缘性介质层的厚度比较薄,所以尽管其介电常数不一定很高,但是经还原再氧化处理后,该表面层半导体陶瓷电容器的单位面积容量仍可达0.05~0.06μF/cm2

(2)晶界层陶瓷电容器 晶粒发育比较充分的BaTiO3半导体陶瓷的表面上,涂覆适当的金属氧化物(例如CuO或Cu2O、MnO2、Bi2O3、Tl2O3等),在适当温度下,于氧化条件下进行热处理,涂覆的氧化物将与BaTiO3形成低共溶液相,沿开口气孔和晶界迅速扩散渗透到陶瓷内部,在晶界上形成一层薄薄的固溶体绝缘层。这种薄薄的固溶体绝缘层的电阻率很高(可达1012~1013Ω·cm),尽管陶瓷的晶粒内部仍为半导体,但是整个陶瓷体表现为显介电常数高达2×104到8×104的绝缘体介质。用这种瓷制备的电容器称为晶界层陶瓷电容器(boundarg layer ceramic capacitor),简称BL电容器。

陶瓷电容器高压陶瓷电容器

(一)概述

随着电子工业的高速发展,迫切要求开发击穿电压高、损耗小、体积小、可靠性高的高压陶瓷电容器。近20多年来,国内外研制成功的高压陶瓷电容器已经广泛应用于电力系统、激光电源、磁带录像机、彩电、电子显微镜、复印机、办公自动化设备、宇航、导弹、航海等方面。

高压陶瓷电容器的瓷料主要有钛酸钡基和钛酸锶基两大类。

钛酸钡基陶瓷材料具有介电系数高、交流耐压特性较好的优点,但也有电容变化率随介质温度升高、绝缘电阻下降等缺点。

钛酸锶晶体的居里温度为-250℃,在常温下为立方晶系钙钛矿结构,是顺电体,不存在自发极化现象,在高电压下钛酸锶基陶瓷材料的介电系数变化小,tgδ及电容变化率小,这些优点使其作为高压电容器介质是十分有利的。

(二)制造工艺要点

(1)原料要精选

影响高压陶瓷电容器质量的因素,除瓷料组成外,优化工艺制造、严格工艺条件是非常重要的。因此,对原料既要考虑成本又要注意纯度,选择工业纯原料时,必须注意原料的适用性。

(2)熔块的制备

熔块的制备质量对瓷料的球磨细度和烧成有很大的影响,如熔块合成温度偏低,则合成不充分。对后续工艺不利。如合成料中残存Ca2 ,会阻碍轧膜工艺的进行:如合成温度偏高,使熔块过硬,会影响球磨效率:研磨介质的杂质引入,会降低粉料活性,导致瓷件烧成温度提高。

(3)成型工艺

成型时要防止厚度方向压力不均,坯体闭口气孔过多,若有较大气孔或层裂产生,会影响瓷体的抗电强度。

(4)烧成工艺

应严格控制烧成制度,采取性能优良的控温设备及导热性良好的窑具。

(5)包封

包封料的选择、包封工艺的控制以及瓷件表面的清洁处理等对电容器的特性影响很大。冈此,必须选择抗潮性好,与瓷体表面密切结合的、抗电强度高的包封料。目前,大多选择环氧树脂,少数产品也有选用酚醛脂进行包封的。还有采取先绝缘漆涂覆,再用酚醛树脂包封方法的,这对降低成本有一定意义。大规模生产线上多采用粉末包封技术。

为提高陶瓷电容器的击穿电压,在电极与介质表面交界边缘四周涂覆一层玻璃釉,可有效地提高电视机等高压电路中使用的陶瓷电容器的耐压和高温负荷性能,如涂有一种硼硅酸铅玻璃釉,可使该电容器在直流电场下的;蕾穿电压提高1.4倍;在交流电场下的击穿电压提高1.3倍。

陶瓷电容器多层陶瓷电容器

多层陶瓷电容器(Multilayer Ceramic Capacitor,MLCC)是片式元件中应用最广泛的一类,它是将内电极材料与陶瓷坯体以多层交替并联叠合,并共烧成一个整体,又称片式独石电容器,具有小尺寸、高比容、高精度的特点,可贴装于印制电路板(PCB)、混合集成电路(HIC)基片,有效地缩小电子信息终端产品(尤其是便携式产品)的体积和重量,提高产品可靠性。顺应了IT产业小型化、轻量化、高性能、多功能的发展方向,国家2010年远景目标纲要中明确提出将表面贴装元器件等新型元器件作为电子工业的发展重点。它不仅封装简单、密封性好,而且能有效地隔离异性电极。MLCC在电子线路中可以起到存储电荷、阻断直流、滤波、祸合、区分不同频率及使电路调谐等作用。在高频开关电源、计算机网络电源和移动通信设备中可部分取代有机薄膜电容器和电解电容器,并大大提高高频开关电源的滤波性能和抗干扰性能。

1.小型化

对于便携式摄录机、手机等袖珍型电子产品,需要更加小型化的MLCC产品。另一方面,由于精密印刷电极和叠层工艺的进步,超小型MLCC产品也逐步面世和取得应用。以日本矩形MLCC的发展为例,外形尺寸已经从20世纪80年代前期的3216减小到现在的0603。国内企业生产的MLCC主流产品是0603型,已突破了0402型MLCC大规模生产的技术难关。0201型MLCC已研制出样品,产业化技术以及国内市场需求均处于发育成熟阶段,目前最小的020l型MLCC长边甚至不到500 μm。

2.低成本化——贱金属内电极MLCC

传统的MLCC由于采用昂贵的钯电极或钯银合金电极,其制造成本的70%被电极材料占去。包括高压MLCC在内的新一代MLCC,采用了便宜的贱金属材料镍、铜作电极,大大降低了MLCC的成本。但是贱金属内电极MLCC需要在较低的氧分压下烧结以保证电极材料的导电性,而过低的氧分压会带来介质瓷料的半导化倾向,不利于元件的绝缘性和可靠性。村田制作所先后开发出几种抗还原瓷料,在还原气氛下烧结,制成的电容器的可靠性可与原先使用贵金属电极的电容器相媲美,这类电容器一面世便很快进入市场。目前,贱金属化的Y5V组别电容器的销量已占该组别MLCC的一半左右,另外正在寻求扩大贱金属电极在其他组别电容器上的应用。

我国在这方面也有显著进展。清华大学与元器件厂商合作用化学方法制备高纯钛酸钡纳米粉(20~100 nm),通过受主掺杂和双稀土掺杂构建“核一壳”结构来提高材料高温抗还原性和实现温度稳定特性,研制出一系列具有自主知识产权的温度稳定型高性能纳米/亚微米晶抗还原钛酸钡瓷料,所研制的材料配方组成、制备方法具有独创性,材料综合性能居国际领先水平。其中高性能X7R(0302)贱金属内电极MLCC瓷料室温相对介电常数高达3 000,陶瓷晶粒尺寸小于300 nm,容温变化率小于±12%,介电损耗小于2.5×10-2,绝缘电阻率约为1013 Ω·cm。MLCC击穿场强大于70 MV/m。已制备出超薄层贱金属内电极MLCC产品,陶瓷介质单层厚度约为3 μm。

3.大容量化、高频化

一方面,伴随半导体器件低压驱动和低功耗化,集成电路的工作电压已由5 V降低到3 V和1.5 V;另一方面,电源小型化需要小型、大容量产品以替代体积大的铝电解电容器。为了满足这类低压大容量MLCC的开发与应用,在材料方面,已开发出相对介电常数比BaTiO3高1~2倍的弛豫类高介材料。在开发新产品过程中,同时发展了三种关键技术,即制取超薄生片粉料分散技术、改善生片成膜技术和内电极与陶瓷生片收缩率相匹配技术。最近日本的松下电子组件公司成功研制出电容量最大为100μF,最高耐压为25 V的大容量MLCC,该产品可用于液晶显示器(LCD)的电源线路。

通信产业的快速发展对元器件的频率要求越来越高。美国Vishay公司推出的Cer—F系列MLCC的高频特性可以与薄膜电容器相媲美,在高频段的某些应用中可以替代薄膜电容器。而我国高频、超高频MLCC产品与国外仍有一定的差距,主要原因是缺乏基础原料及其配方的研发力度。随着技术不断更新,现已不断涌现出了低失真率和冲击噪声小的产品、高频宽温长寿命产品、高安全性产品以及高可靠低成本产品。

陶瓷材料具有优越的电学、力学、热学等性质,可用作电容器介质、电路基板及封装材料等。

陶瓷电容器陶瓷材料的微观结构

陶瓷材料是由氧化物或其他化合物制成坯体后,在接近熔融的温度下,经高温焙烧制得的材料。通常包括原料粉碎、浆料制备、坯件成型和高温烧结等重要过程。陶瓷是一个复杂的多晶多相系统,一般由结晶相、玻璃相、气相及相界交织而成,这些相的特征、组成、相对含量及其分布情况,决定着整个陶瓷的基本性质。

陶瓷中的晶相通常指那些大小不同、形状不一、取向随机的晶粒,晶粒的直径通常为几微米至几十微米。晶相可以同属一种化合物或一种晶系,也可以是不同化合物或不同晶系。陶声中若存在两种以上组成和结构互不相同的晶粒时,则称其为多晶相陶瓷,其中相对含量最多产品相称为主晶相,其他的称为副品相。其中主晶相的性能基本上决定了材料的性能,如相对f电常数、电导率、损耗及热膨胀系数等。所以,要获得性能良好的陶瓷,就必须选择适当的:晶相。此外,还应考虑晶粒的大小、均匀程度、晶粒取向、晶界形成及杂质分布等情况。

晶粒间界是指两个晶粒之间的过渡区,在这个过渡区内,品格结构的完整性或化学成分与晶粒体内有显著的区别。在晶粒间界上通常聚集着大量的位错、热缺陷与杂质缺陷,因而对陶瓷材料的力学性能和电学性能有重大影响。

气相一般分布于晶界、重结晶晶体内和玻璃相中,它是陶瓷组织结构中很难避免的一部分。其来源于烧成过程中各个晶粒之间不可能实现完全紧密的镶嵌,玻璃相也不可能完全填充各个晶粒的空隙;也可能是由于坯料烧结时释放出气体而形成的气孔。气相会严重地影响陶瓷材料的电学性能、力学性能和热学性能。一般希望陶瓷中气相的含量越少越好。

陶瓷的微观结构决定了材料的一系列力学性能和电学性能。一致的晶粒组成,微细晶粒的均匀分布及致密的烧结体,可使陶瓷的机械强度和介电性能达到预期的结果。

陶瓷电容器电容器瓷介的特点与分类

陶瓷电容器(如图所示)是在陶瓷基体两面形成金属层后焊接引线制成的,这些用作电容器的陶瓷材料被称为瓷介。

与其他电容器的介质材料相比,介电陶瓷有如下特点:

①介电常数和介电常数的温度系数及其机械性能和热物理性能可调控,且介电常数也较大。

②有些介电陶瓷(强介瓷,主要为铁电瓷)的介电常数能随电场强度发生变化,可以用它制造非线性电容器,有时称为压敏电容器。

③原料丰富,成本低,易于大量生产。

除表面层型和晶界层型瓷介外,瓷介最大的缺点是难以做得很薄,故使电容器的容量受到要大限制。此外,瓷介常含有气隙,致使其抗电强度不高,一般不超过35kV/mm。

电容器瓷介有多种分类方法。按用途可分为:1类瓷,用于制造1类(高频)瓷介电容器;2类瓷,用于制造2类(铁电)瓷介电容器;3类瓷,用于制造3类(半导体)瓷介电容器。其中相对介电常数较大(ε=12~600)的1类瓷称为高介瓷;而把相对介电常数更高(ε=103~104)的2类瓷称为强介瓷;而相对介电常数较低(ε<10.5)的3类瓷称为低介瓷。高介瓷和低介瓷的tanδ很小,适合于制造高频电路中的电容器,故称之为高频瓷。由于强介瓷的tanδ大,只适合于制造低频电路中应用的电容器,因而又称之为低频瓷。工程上一般采用混合分类的方法,将电容器瓷分为高介瓷、强介瓷、独石瓷和半导体晶界瓷。下面主要介绍几种低介、高介瓷和强介瓷的性能特点。

陶瓷电容器低介瓷

滑石瓷是一种典型的低介瓷。滑石瓷是以天然滑石(3MgO·4SiO2·H2O)为主要原料制备而成的,故此取名滑石瓷。它的主晶相是原顽辉石,即偏硅酸镁(MgO-SiO2)。滑石瓷的配方中除主要成分滑石外,为改进工艺条件及改善瓷料的性能,还引进了一系列的添加物,如黏土、菱镁矿、碳酸钡等。

滑石瓷是一种低介结构陶瓷,属于硅酸盐中的MgO—Al2O3一SiO2系统。滑石瓷的特点是介电常数很低,介质损耗很小,工艺性能好,便于制造形状复杂的零件。另外,它的矿源丰富,产品成本低,因此一直是应用最广的结构陶瓷之一。

滑石瓷的介电常数虽然不高,但它具有高的绝缘强度,而且高频下的介质损耗角正切值很低,其tanδ值可低达(3.5~4)×10-4,因而可用来制造各种小容量的高压电容器、高压大功率瓷介电容器。滑石瓷还具有较高的静态抗弯强度、较小的线膨胀系数和较好的化学稳定性。滑石瓷还可用于各种类型的绝缘子、线圈骨架、高频瓷轴、波段开关、电子管座及电阻基体等。它可以用于制造绝大部分的结构零件。

陶瓷电容器高介瓷与强介瓷

高介瓷的主要品种有金红石瓷、钛酸钙瓷、钛酸镁系瓷、钛酸锆系瓷和锆酸盐瓷;强介瓷主要是以钛酸钡为主晶相的钛酸钡系瓷。

金红石瓷又称二氧化钛瓷,其主晶相为金红石(TiO2),属四方(正方)晶系。这种瓷料的相对介电常数约为80~90,介电常数的温度系数αε为-(750~850)×10-6/℃,介质损耗小,适合于制造高频瓷介电容器。此外,这种瓷料的成型性能比其他高介电容器瓷好,因而也是制造大功率瓷介电容器的主要瓷料之一。

钛酸钙瓷以钛酸钙(CaTiO3)为主晶相,属钙钛矿型结构。这种瓷料的相对介电常数高,约140~150,介质损耗小,约为(2~4)×10-4,它是一种常用的电容器陶瓷,可用于制造对容量稳定性要求不高的槽路电容器、高频旁路电容器和耦合电容器,还可作为各种电容器瓷料的温度系数调节剂。钛酸钙瓷的相对介电常数很高,但介电常数的温度系数却为很大的负值,可以制造出一种相对介电常数与钛酸钙相当,而温度系数却和金红石相当的钛酸钙一铋化合物一钛酸锶系瓷。

钛酸镁系瓷主要包括钛酸镁瓷、钛酸镁一钛酸钙系瓷、钛酸镁一钛酸镧一钛酸钙系瓷等。其中钛酸镁瓷主晶相为正钛酸镁(2MgO·TiO2)。相对介电常数约16~18,αε=(30±10)×10-6/℃,tanδ=(1~3)×10-4,很适于制造热稳定性高的瓷介电容器。

钛酸锆系瓷的主晶相是钛酸锆(ZrTiO3),这类瓷具有良好的介电性能,介质损耗小,在高温下的介电性能及稳定性优于其他瓷介。

锆酸盐瓷的主要优点是高温介电性能比含钛陶瓷高,含钛的金红石瓷、钛酸镁瓷等通常只能在85℃下工作。工作温度太高且在直流电场作用下,含钛陶瓷容易发生电化学老化,即绝缘电阻逐渐减小,介质损耗逐渐增大,以致最后不能使用。锆酸盐瓷大部分能工作在155℃甚至更高温度下,而很少发生电化学老化。在锆酸盐化合物中,适宜于制造高频电容器的材料只有锆酸钙和锆酸锶两种。

钛酸钡系瓷的相对介电常数很高(4 000~6 000),故又称强介瓷,这类瓷主要是铁电瓷。铁电瓷的特点是相对介电常数随外加电场强度的变化而改变,即具有非线性。根据非线性强弱。可分为强非线性瓷和弱非线性瓷。弱非线性瓷主要用作电容器介质,而制造电压敏感电容器时,则采用强非线性瓷。介电陶瓷主要用于制造体积很小、容量上限较大和用于低频电路的电容器。因此,对它的主要要求首先是相对介电常数大及其温度稳定性好,其次才是抗电强度高和介质损耗角正切值小等。而一般规律是相对介电常数越大的强介瓷,其非线性越强,相对介电常数随温度的变化率也越大。

矩形片状陶瓷电容器矩形电容命名方法有多种,常见的有:

(1)同内矩形片状陶瓷电容器矩形电容命名系列

代号 温度特性容量 误差耐压包装

CC3216 CH 151K 101WT

(2)美国Predsidio公司系列

代号 温度特性 容量 误差包装

CCl206 NPO151JZT

与片状电阻相同,以上代号中的字母表示矩形片状陶瓷电容器,4位数字表示其长、宽度,厚度略厚一点,一般为1~2mm。

与片状电阻相似,容量的前两位表示有效数,第3位表示有效数后零的个数,单位为pF。如151表示150pF、1p5表示1.5pF。

误差部分字母含义:C为±0.25pF,D为±0.5pF,F为±1 pF,J为±5pF,K为±10pF,M为±20pF,I为-20%~81%。

陶瓷电容器文献

陶瓷电容器基础知识 陶瓷电容器基础知识

格式:pdf

大小:10.1MB

页数: 36页

评分: 4.4

陶瓷电容器基础知识

立即下载
积层陶瓷电容器 积层陶瓷电容器

格式:pdf

大小:10.1MB

页数: 未知

评分: 4.3

C3216/C3225系列陶瓷电容通过优化内部电极结构,取得优异的AC耐压特性,从而在原有的直流耐压基础上,保证了交流耐压特性。同时,该产品在额定电压为DC 630V的情况下拥有2种形状(即3216尺寸和3225尺寸),3216尺寸的容量范围为1.0~15.0nF,

立即下载

介电体层电极陶瓷电容器颗粒电体层

民用直流高压陶瓷电容器,主要应用在机械设备检测仪器中。如X-RAY,CT机,直流高压发生器,主要做倍压,分压,耦合,载波等作用。直流高压陶瓷电容器因使用场合不同,对电容器的选取亦不同。通常,Y5V,Y5U等低频介质陶瓷电容器只能应用在1KHZ以内的场合,主要是在工频50HZ环境一应用。Y5T,Y5P等II类陶瓷电容器则可以在高频(30KHZ~100KHZ)环境下应用。N4700则可以应用在550KHZ以上的高频环境。材料等级越高,频率范围越高,比如说NP0,N150,N750等,能在1GHZ以上应用。

民用的直流高压陶瓷电容器主要包括以下参数:

1.电压等级;

2.容量等级;

3.温度系数;

4.外观尺寸;

5.频率特性;

6.损耗因素;

7.绝缘电阻;

8.漏电流;

9.内阻 。

JEC小编给大家带来了三种处理陶瓷电容器故障的方法,很多刚接触陶瓷电容器的小白遇到故障的时候不会应对,看完本文阐述的相信大家都会有个大致的方向,下次遇见这种故障问题都会熟心应手。

方法一:当陶瓷电容器爆炸着火时,就立即断开电源,并用砂子和干式灭火器灭火。

方法二:当陶瓷电容器的保险熔断时,应向调度汇报,待取得同意后再拉开陶瓷电容器的断路器。切断电源对其进行放电,先进行外部检查,如套管的外部有无闪络痕迹,外壳是否变形,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,检查陶瓷电容器组接线是否完整、牢固,是否有缺相现象,如未发现故障现象,可换好保险后投入。如送电后保险仍熔断,则应退出故障陶瓷电容器,而恢复对其余部分送电。如果在保险熔断的同时,断路器也跳闸,此时不可强送。须待上述检查完毕换好保险后再投入。

方法三:陶瓷电容器的断路器跳闸,而分路保险未断,应先对陶瓷电容器放电三分钟后,再检查断路器电流互感器电力电缆及陶瓷电容器外部等。若未发现异常,则可能是由于外部故障母线电压波动所致。经检查后,可以试投;否则,应进一步对保护全面的通电试验。通过以上的检查、试验,若仍找不出原因,则需按制度办事,对陶瓷电容器逐渐进行试验。未查明原因之前,不得试投。

以上就是陶瓷电容器的故障处理方法,处理故障也是有步骤的,要谨记,不要慌乱。工程可根据小编所说的实地操作一下哦。

以上资讯来自东莞市智旭电子有限公司研发部提供,更多资讯请大家移步至网站中智旭资讯中获取。www.jec365.com

陶瓷电容器相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏