土壤基本信息

中文名称 土壤 外文名称 soil
别称 主要元素 氧硅铝铁钙镁钛钾磷硫
矿物组成 原生矿物、次生矿物 发生层 耕作层、风化层、母质层等
成土因素 气候、母质、水、生物、时间 容重 1.0--1.5g/cm3
密度 2.6--2.7g/cm3 质地类型 壤土、砂土、黏土

土壤形状

块状结构体

近似立方体型,长、宽、高大体相等,组分一般大于3cm,1-3cm之内的称作核状结构体,外形不规则,多在粘重而乏有机质的土中生成,熟化程度低的死黄土常见此结构,由于相互支撑,会增大孔隙,造成水分快速蒸发跑墒,多有压苗作用,不利植物生长繁育。

改良方法:可在墒情合适时耙耱,冬季冻土后,辗压,以提高土壤有机质含量,也可掺河沙或炉渣灰来改良。

片状结构体

水平面排列,水平轴比垂直轴长,界面呈水平薄片状;农田犁耕层、森林的灰化层、园林压实的土壤均属此类。不利于通气透水,造成土壤干旱,水土流失。

改良方法:松土施用有机肥,公园街道绿地行人常经过的地方,可进行透气铺装、种植地被植物或进行必要的围栏保护,结皮和板结的可采取适墒深翻,增施有机肥解决。

结构体

沿垂直轴排列,垂直轴大于水平轴,土体直立,结构体大小不一,坚实硬,内部 无效孔隙占优势,植物的根系难以介入、通气不良、结构体之间有形成的大裂隙,既漏水又漏肥。改良方法:通过深翻施肥和深翻种植绿肥。

团粒结构体

这是最适宜植物生长的结构体土壤类型,它在一定程度上标志着土壤肥力的水平和利用价值。其能协调土壤水分和空气的矛盾;能协调土壤养分的消耗和累积的矛盾;能调节土壤温度,并改善土壤的温度状况;能改良土壤的可耕性,改善植物根系的生长伸长条件。

土壤造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
生物土壤滤池 1、处理气量:22000m3/h;土壤滤池占地面积:120m2;滤池深:1.8m;设计接触时间不小于40s;辅助设备及相关工艺系统; 2、布气系统、生物土壤,滤池填料、喷淋系统 3、设计及技术服务包 查看价格 查看价格

杭州楚环

13% 广西立淇环保有限公司
LoRa智能土壤采集器 ZHCJ-01 查看价格 查看价格

绿粤

13% 深圳市绿粤生态科技有限公司
生物土壤滤池一体化处理设备 处理气量:7000m3/h;生物土壤滤池含布气系统、生物土壤,喷头、PPR连接管)等材料,滤池填料、喷淋系统 查看价格 查看价格

江苏博恩

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1、处理气量:65000m3/h;2、含布气系统、生物土壤,滤池填料、喷淋系统3、除臭系统4、其他配套系统5、技术服务包,不含设计 查看价格 查看价格

杭州楚环

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1、处理气量:22500m3/h;占地130m2;设计接触时间不小于40s;辅助设备及相关工艺系统;2、生物土壤滤池含布气系统、生物土壤,滤池填料、喷淋系统3、除臭系统4、设计及技术服务包 查看价格 查看价格

桂润

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1、处理气量:20000m3/h;辅助设备及相关工艺系统;2.含送风系统3.布气系统4.生物土壤及生态系统5.滤池填料及除臭系统6.喷淋系统7.设计及技术服务包 查看价格 查看价格

江苏博恩

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1.处理气量:6000m3/h ;2.含送风系统3.布气系统4.生物土壤及生态系统5.滤池填料及除臭系统6.喷淋系统7.设计及技术服务包 查看价格 查看价格

桂润

13% 广西立淇环保有限公司
土壤测试仪 45*30/TRF-4A 查看价格 查看价格

农创

13% 北京盟创伟业科技有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
暂无数据
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
耕作层土壤、犁底层土壤、回填用素土 耕作层土壤、犁底层土壤、回填用素土|1m² 1 查看价格 佛山市顺德方通渣土运输有限公司 广东  广州市 2021-10-27
土壤灭菌剂 土壤灭菌剂|1m² 3 查看价格 四川贝斯特力科技有限公司 四川   2022-06-08
土壤传感器 土壤传感器|1台 1 查看价格 广州市智雨节水科技有限公司 全国   2020-08-17
土壤改良调理剂 土壤PH值改良|400t 1 查看价格 东莞由你带路农业科技有限公司 广东  江门市 2018-05-17
土壤消杀剂 1.专用土壤灭菌剂.2.土壤病原体消杀,改善基底土壤pH值.3.土壤病原体消杀:清水溶解土壤灭菌类药剂,湖底均匀泼洒,设计用量50g/m24.其他:满足设计及规范要求.|23500kg 1 查看价格 四川中建普联科技有限公司 全国   2022-11-16
土壤养分速测仪 1、检测功能包括土壤及化肥中的铵态氮、速效磷、有效钾、PH、|1台 1 查看价格 浙江托普云农科技股份有限公司 全国   2018-12-13
土壤养分速测仪 型号:HX-YF2 可测量土壤养分、肥料养分、植株种的养分等十几项.|6166套 1 查看价格 深圳市鸿翔广源电子技术有限公司 广东  深圳市 2015-09-09
土壤养分速测仪 型号:HX-YF1 可测量土壤、肥料的氮、磷、钾、有机质、PH等参数.|1662套 1 查看价格 深圳市鸿翔广源电子技术有限公司 广东  深圳市 2015-05-12

土壤耕层是对于耕作的土壤来说的,对于仍处于自然形态的土壤来说是没有这个概念的。土壤耕层的形成是由于人类的农业种植活动扰乱了土壤的自然状态下的结构,是土壤表层大约0-20cm。土壤耕层以下的层次称为耕底层。对于土壤耕层到底有多厚是如何划分的,西北农林科技大学土壤学专家王益权教授认为区分土壤耕层主要是有两个出发点:一是土壤的肥力,也就是土壤主要的养分有机质的集中层;二是土壤的根系的长度,耕作层自然要与植物根系所对应。根据这两点各个地方的耕层是不一致的,但是为了研究方便我们一般来说把从土表面0-20cm这个垂直厚度作为土壤的耕层厚度。土壤耕层一方面富集了土壤主要的肥力,另一方面也是土壤根系的主要集中部分。具体研究时可以根据实际情况确定土壤的耕层厚度。因为有的植物像黄瓜和草莓的根系比较浅,阔叶乔木的根系也比较浅,而禾谷类的根系就比较深。土壤刨面试验表明在我国农业的发祥地杨凌,八米以下仍然可见小麦的根系。

土壤形成因素

基本观点

成土因素学说的基本观点可概括为:

①土壤是一种独立的自然体,它是在各种成土因素非常复杂的相互作用下形成的。

②对于土壤的形成来说,各种成土因素具有同等重要性和相互不可替代性。其中生物起着主导作用。土壤是一定时期内,在一定的气候和地形条件下,活有机体作用于成土母质而形成的。

母质因素

(1)土壤形成的母质因素

风化作用使岩石破碎,理化性质改变,形成结构疏松的风化壳,其上部可称为土壤母质。如果风化壳保留在 原地,形成残积物,便称为残积母质;如果在重力、流水、风力、冰川等作用下风化物质被迁移形成崩积物、冲积物、海积物、湖积物、冰碛物和风积物等,则称为运积母质。成土母质是土壤形成的物质基础和植物矿质养分元素(氮除外)的最初来源。母质代表土壤的初始状态,它在气候与生物的作用下,经过上千年的时间,才逐渐转变成可生长植物的土壤。母质对土壤的物理性状和化学组成均产生重要的作用,这种作用在土壤形成的初期阶段最为显著。随着成土过程进行得愈久,母质与土壤间性质的差别也愈大,尽管如此,土壤中总会保存有母质的某些特征。

首先,成土母质的类型与土壤质地关系密切。不同造岩矿物的抗风化能力差别显著,其由大到小的顺序大致为:石英→白云母→钾长石→黑云母→钠长石→角闪石→辉石→钙长石→橄榄石。因此,发育在基性岩母质上的土壤质地一般较细,含粉砂和粘粒较多,含砂粒较少;发育在石英含量较高的酸性岩母质上的土壤质地一般较粗,即含砂粒较多而含粉砂和粘粒较少。此外,发育在残积物和坡积物上的土壤含石块较多,而在洪积物和冲积物上发育的土壤具有明显的质地分层特征。

其次,土壤的矿物组成和化学组成深受成土母质的影响。不同岩石的矿物组成有明显的差别,使其上发育的土壤的矿物组成也就不同。发育在基性岩母质上的土壤,含角闪石、辉石、黑云母等深色矿物较多;发育在酸性岩母质上的土壤,含石英、正长石和白云母等浅色矿物较多;其他如冰碛物和黄土母质上发育的土壤,含水云母和绿泥石等粘土矿物较多,河流冲积物上发育的土壤亦富含水云母,湖积物上发育的土壤中多蒙脱石和水云母等粘土矿物。从化学组成方面看,基性岩母质上的土壤一般铁、锰、镁、钙含量高于酸性岩母质上的土壤,而硅、钠、钾含量则低于酸性岩母质上的土壤,石灰岩母质上的土壤,钙的含量最高。

气候因素

(2)土壤形成的气候因素

气候对于土壤形成的影响,表现为直接影响和间接影响两个方面。直接影响指通过土壤与大气之间经常进行 的水分和热量交换,对土壤水、热状况和土壤中物理、化学过程的性质与强度的影响。通常温度每增加10℃,化学反应速度平均增加1~2倍;温度从0℃增加到50℃,化合物的解离度增加7倍。在寒冷的气候条件下,一年中土壤冻结达几个月之久,微生物分解作用非常缓慢,使有机质积累起来;而在常年温暖湿润的气候条件下,微生物活动旺盛,全年都能分解有机质,使有机质含量趋于减少。

气候还可以通过影响岩石风化过程以及植被类型等间接地影响土壤的形成和发育。一个显著的例子是,从干燥的荒漠地带或低温的苔原地带到高温多雨的热带雨林地带,随着温度、降水、蒸发以及不同植被生产力的变化,有机残体归还逐渐增多,化学与生物风化逐渐增强,风化壳逐渐加厚。

土壤常见问题

  • 怎么弄,才能让土壤变成碱性土壤

    (1)施用粉 每平方米的苗床,掺入100~200g的粉,其酸性有效期可维持2~3年。 (2)施用亚铁粉末 每平方米施入150g的亚铁粉末,施后可降低0.5~1.0单位的pH值;对于特别粘重的土壤,用量...

  • 土壤分层

    土壤是地球上能够生长绿色植物的疏松表层。不同的土壤类型,分层也不一样。一般人为地把他们分为A,B, C三个层,即表层,淋溶层,母质层,接下来再细分。表土层又可分为耕作层和犁底层,也叫腐殖质—...

  • 土壤改良

    是具体土壤具体分析的,一般是按土质改良情况配合比计算改良费用的

土壤基本含义

土壤由岩石风化而成的矿物质、动植物,微生物残体腐解产生的有机质、土壤生物(固相物质)以及水分(液相物质)、空气(气相物质),氧化的腐殖质等组成。固体物质包括土壤矿物质、有机质和微生物通过光照抑菌灭菌后得到的养料等。液体物质主要指土壤水分。气体是存在于土壤孔隙中的空气。土壤中这三类物质构成了一个矛盾的统一体。它们互相联系,互相制约,为作物提供必需的生活条件,是土壤肥力的物质基础。

构成

固体,气体和液体

土壤矿物质是岩石经过风化作用形成的不同大小的矿物颗粒(砂粒、土粒和胶粒)。土壤矿物质种类很多,化学组成复杂,它直接影响土壤的物理、化学性质,是作物养分的重要来源之一。

土壤由矿物质和腐殖质组成的固体土粒是土壤的主体,约占土壤体积的50%,固体颗粒间的孔隙由气体和水分占据。

土壤气体中绝大部分是由大气层进入的氧气、氮气等,小部分为土壤内的生命活动产生的二氧化碳和水汽等。土壤中的水分主要由地表进入土中,其中包括许多溶解物质。

土壤中还有各种动物、植物和微生物。

有机质

有机质含量的多少是衡量土壤肥力高低的一个重要标志,它和矿物质紧密地结合在一起。在一般耕地耕层中有机质含量只占土壤干重的0.5-2.5%,耕层以下更少,但它的作用却很大,群众常把含有机质较多的土壤称为"油土"。土壤有机质按其分解程度分为新鲜有机质、半分解有机质和腐殖质。腐殖质是指新鲜有机质经过酶的转化所形成的灰黑土色胶体物质,通过阳光杀灭了致病的有害菌病毒寄生虫后,保留其营养物质的土壤,一般占土壤有机质总量的85-90%以上。

腐殖质的作用主要有以下几点:

(一) 作物养分的主要来源 腐殖质既含有氮、磷、 钾、硫、钙等大量元素,还有微量元素,经微生物分解可以释放出来供作物吸收利用。

(二)增强土壤的吸水、保肥能力 腐殖质是一种有机胶体,吸水保肥能力很强,一般粘粒的吸水率为50-60%,而腐殖质的吸水率高达400-600%;保肥能力是粘粒的6一10倍。

(三)改良土壤物理性质 腐殖质是形成团粒结构的良好胶结剂,可以提高粘重土壤的疏松度和通气性,改变砂土的松散状态。同时,由于它的颜色较深,有利吸收阳光,提高土壤温度。

(四)促进土壤植物的生长 腐殖质为植物生长提供了丰富的养分和能量,土壤酸碱适宜,因而有利植物生长,促进土壤养分的转化。

(五)作物生长发育 腐殖质在分解过程中产生的腐殖酸、有机酸、维生素及一些激素,对作物生育有良好的促进作用,可以增强呼吸和对养分的吸收,促进细胞分裂,从而加速根系和地上部分的生长。土壤有机质主要来源于施用的有机肥料和残留的根茬。许多社队采用柴草垫圈、秸秆还田、割青沤肥、草田轮作、粮肥间套、扩种绿肥等措施,提高土壤有机质含量,使土壤越种越肥,产量越来越高,应当因地制宜加以推广。

微生物

土壤微生物的种类很多,只有抑制有害菌,利用这些菌产生的植物需要的一些养料。如进行有效的阳光照射后,细菌、真菌、放线菌、原生动物、被有效的杀灭,腐体可作养料。土壤微生物的数量很大,1克土壤中就有几亿到几百亿个。1亩地耕层土壤中,微生物的重量有几百斤到上千斤。土壤越肥沃,微生物的利用率也越高。

狭义的细菌为原核微生物的一类,是一类形状细短,结构简单的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者,量少不易致病,量多时可致病。

植物茎叶中含有果胶酶、纤维素酶、过氧化氢酶、琥珀酸硫激酶、琥珀酸脱氢酶、延胡索酸酶、苹果酸脱氢酶等,把植物的茎叶作为肥料,是作物生长的必要营养的来源。

微生物在土壤中的主要作用如下:

(一)分解有机质 作物的残根败叶和施入土壤中的有机肥料,只有经过土壤微生物的作用,才能腐烂分解,释放出营养元素,供作物利用;并且形成腐殖质,改善土壤的理化性质。

(二)分解矿物质 例如磷细菌能分解出磷矿石中的磷,钾细菌能分解出钾矿石中的钾,以利作物吸收利用。

(三)固定氮素氮气在空气的组成中占4/5,数量很大,但植物不能直接利用。土壤中有一类叫做固氮菌的微生物,能利用空气中的氮素作食物,在它们死亡和分解后,这些氮素就能被作物吸收利用。固氮菌分两种,一种是生长在豆科植物根瘤内的,叫根瘤菌,种豆能够肥田,就是因为根瘤菌的固氮作用增加了土壤里的氮素;另一类单独生活在土壤里就能固定氮气,叫自生固氮菌。另外,有些微生物在土壤中会产生有害的作用。例如反硝化细菌,能把硝酸盐还原成氮气,放到空气里去,使土壤中的氮素受到损失。实行深耕、增施有机肥料、给过酸的土壤施石灰、合理灌溉和排水等措施,可促进土壤中有益微生物的繁殖,发挥微生物提高土壤肥力的作用。

水分

土壤是一个疏松多孔体,其中布满着大大小小蜂窝状的孔隙。直径0.001-0.1毫米的土壤孔隙叫毛管孔隙。存在于土壤毛管孔隙中的水分能被作物直接吸收利用,同时,还能溶解和输送土壤养分。毛管水可以上下左右移动,但移动的快慢决定于土壤的松紧程度。松紧适宜,移动速度最快,过松过紧,移动速度都较慢。降水或灌溉后,随着地面蒸发,下层水分沿着毛管迅速向地表上升,应在分墒后及时采取中耕、耙、耱等措施,使地表形成一个疏松的隔离层,切断上下层毛管的联系,防止跑墒。"锄头有水"的科学道理就在这里。土壤含水量降至黄墒以下时,毛管水运行基本停止,土 壤水分主要以气化方式向大气扩散丢失。这时进行镇压(碾地),使地表形成略为紧实的土层,一方面可以接通已断的毛细管,使底墒借毛管作用上升;另一方面可减少大孔隙,防止水汽扩散损失,所以群众说"碾子提墒,碾子藏墒"。镇压后耱地,使耕层上再形成一个平整而略松的薄层,保墒效果更好。五、土壤空气土壤空气对作物种子发芽、根系发育、微生物活动及养分转化都有极大的影响。生产上应采用深耕松土、破除扳结、排水、晒田(指稻田)等措施,以改善土壤通气状况,促进作物生长发育。

在19世纪末,俄国土壤学家道库恰耶夫(V.V.Dokuchaisv)从土壤发生学的观点,认为土壤的性质是气候、生物、地形、母质和时间等成土因素综合作用的结果。土壤是发育于地球陆地表面具有一定肥力且能够生长植物的疏松表层(包括海、湖浅水区)。它是地球表面上的附着物,人力可以搬动土壤。

种类(中学)

土壤分为:土壤可以分为砂质土、黏质土、壤土三类

砂质土的性质:含沙量多,颗粒粗糙,渗水速度快,保水性能差,通气性能好

黏质土的性质:含沙量少,颗粒细腻,渗水速度慢,保水性能好,通气性能差

壤土的性质:含沙量一般,颗粒一般,渗水速度一般,保水性能一般,通气性能一般。

二者关系

施肥必须考虑土壤,这是因为:第一,只有在土壤对某一养分供应不足时,才需要施肥,并不需要把所有的必需元素施入土壤,因为大多数营养元素,土壤(或大气)已能充分供应,否则会造成浪费,甚至造成作物中毒。这一点有时被忽视。第二,肥料施入土壤后会发生一些列变化,会在不同程度上影响影响肥料效果,不考虑土壤,也就谈不上真正的合理施肥。如在水田中施用硝态氮肥,必然会降低肥效等。

营养环境

作物的土壤营养环境包括:物理环境、化学环境和养分环境。

土壤物理环境首先影响作物的水分和空气供应,也直接影响养分的供应和保蓄。土壤是由大小不同的颗粒组成,这些颗粒构成了土体的三相,即固相、液相和气相。一般肥沃土壤,它的固相占整个土壤体积的一半以上,另外不到一半的体积,充满水分和空气。土壤孔隙不仅承担着作物水分、空气的供应,本身也对作物生长有重要作用,同时也直接影响养分在土壤中的扩散。土壤粘粒、土壤有机质和土壤酸度是影响土壤化学环境的重要因素。土壤养分即使在施肥的情况下也对植物生长起着重要的作用。据估计,在一般施肥情况下,中等产量水平时,植物吸收的氮中有30%~60%、磷中50%~70%、钾中40%~60%是来自土壤,可见土壤养分环境对作物营养的重要作用。

我国概况

氮:我国土壤耕层中的全氮含量大概变动在0.05%~0.25%。其中东北地区的黑土是我国土壤平均含氮量最高的土壤,一般为0.15%~0.35%。而西北黄土高原和华北平原的土壤含氮量较低,一般为0.05%~0.1%。华中华南地区,土壤全氮含量有较大的变幅,一般为0.04%~0.18%。在条件基本相近的情况下,水田的含氮量往往高于旱地土壤。我国绝大部分土壤施用氮肥都有一定的增产效果。

磷:磷是农业上仅次于氮的一个重要土壤养分。土壤中大部分磷都是无机状态(50%~70%),只有30%~50%是以有机磷形态存在的。

我国北方土壤中的无机磷主要是磷酸钙盐,而南方主要是磷酸铁、铝盐类。其中有相当大的部分是被氧化铁胶膜包裹起来的磷酸铁铝,称为闭蓄态磷。

我国土壤全磷含量变动在0.02%~0.11%,其中北方土壤的全磷含量,一般比南方土壤高,我国土壤的全磷含量大体上从南向北有增加的趋势。如东北地区的黑土、白浆土全磷含量一般为0.06%~0.15%,而我国南方的红壤和砖红壤全磷含量一般为0.01%~0.03%。

土壤全磷含量的高低,通常不能直接表明土壤供应磷素能力的高低,它是一个潜在的肥力指标,但是当土壤全磷含量低于0.03%时,土壤往往缺磷。'在土壤全磷中,只有很少一部分是对当季作物有效的,称为土壤有效性磷。

随着产量的提高,我国土壤缺磷面积不断扩大,原来那些对磷肥效果不明显的地区表现了严重的缺磷现象,如广大的黄淮海平原,西北黄土高原以至新疆等地都大面积缺磷。而原来缺磷的地区,由于长期施磷,磷肥效果下降,这主要是指华中、华南某些缺磷水稻土。在华中华南中高产水稻土上,随着有机肥的施入,磷已可满足作物需要,而大面积的酸性旱地土壤以及部分低产水田,缺磷仍然是相当严重的。

钾:土壤中钾全部以无机形态存在,而且其数量远远高于氮磷。我国土壤的全钾含量也大体上是南方较低,北方较高。南方的砖红壤,土壤全钾含量平均只有0.4%左右,华中、华东的红壤则平均为0.9%,而我国北方包括华北平原、西北黄土高原以至东北黑土地区,土壤全钾量一般都在1.7%左右。因此,缺钾主要在南方,北方已开始出现缺钾现象。

土壤中的微量元素大部分是以硅酸盐、氧化物、硫化物、碳酸盐等无机盐形态存在。在土壤溶液中可有一部分微量元素以有机络合态存在。通常把水溶液或交换态的微量元素看作是对作物有效的。土壤中微量元素供应不足的一个原因是土壤本身含量过低,另一种原因是含量并不低,甚至很高但是由于土壤条件(主要是土壤酸碱度和氧化还原条件)造成有效性降低而供应不足。在前一种条件下,需要靠补施微量元素肥料,后一种情况下,有时只需改变土壤条件,增加土壤微量元素的有效性,就可增加供应水平。

施肥影响

增加土壤养分无论施用有机肥料或无机肥料都能增加土壤养分。无机肥料大多易于溶解,施用后除部分为土壤吸收保蓄外,作物可以立即吸收。而有机肥料,除少量养分可供作物直接吸收外,大多数须经微生物分解,作物方能利用。在分解过程中,会产生二氧化碳以及各种有机酸和无机酸。二氧化碳除被植物吸收外,溶解在土壤水分中形成的碳酸和其它各种有机酸、无机酸都有促进土壤中某些难溶性矿质养分溶解的作用,从而增加土壤中有效养分的含量。有些肥料(如石灰、石膏)除直接增加土壤养分,还能通过调节土壤反应,提高土壤中有效养分的含量。

改善土壤结构施用有机肥料和含钙质多的肥料,除了能增加土壤养分外,还能促进土壤团粒结构的形成。因为有机肥料在土中微生物的作用下,进行矿化作用增加土中有效养分,同时,增加土壤腐殖质含量。腐殖质在土中遇到钙离子就会和土粒凝聚在一起形成水稳定性团粒结构。改善粘土的坚实板结以及沙土的跑水漏肥等不良性状,提高土壤肥力。

改善土壤的水热状况一般有机质都有吸水和保水的能力,特别象腐殖质这一类亲水胶体,保水能力更强。土壤中的腐殖质和粘土粒结合形成团粒,在团粒内部有许多毛管孔隙,也能保存很多的水分,能被植物利用。由于腐殖质是综黑色的物质,土壤中腐殖质含量多,土壤颜色较深,可增加吸收日光热能,有利于提高土温。同时阳光可以杀灭土壤里的有害菌,保留其腐化物的营养成分,保水能力也强,有利于作物生长。

增加生理活性物质增施有机肥能促进微生物的活动。由于微生物活动的结果,除了增加土壤中的矿物质营养和腐殖质以外,通过合理的阳光照射,还能产生多种维生素、抗生素、生长素等,具有促进根系发育,刺激作物生长,增强抗病能力。

土壤生态

土壤是岩石圈表面的疏松表层,是陆生植物生活的基质和陆生动物生活的基底。土壤不仅为植物提供必需的营养和水分,而且也是土壤动物赖以生存的栖息场所。土壤的形成从开始就与生物的活动密不可分,所以土壤中总是含有多种多样的生物,如细菌、真菌、放线菌、藻类、原生动物、轮虫、线虫、蚯蚓、软体动物和各种节肢动物等,少数高等动物(如鼹鼠等)终生都生活在土壤中。据统计,在一小勺土壤里就含有亿万个细菌,25克森林腐植土中所包含的霉菌如果一个一个排列起来,其长度可达11千米。可见,土壤是生物和非生物环境的一个极为复杂的复合体,土壤的概念总是包括生活在土壤里的大量生物,生物的活动促进了土壤的形成,而众多类型的生物又生活在土壤之中。所以土壤被称为世界上最重要的能源,生活在地球上所有的陆生生物和一部分海洋生物都直接或间接地被土壤所影响着。

土壤无论对植物来说还是对土壤动物来说都是重要的生态因子。植物的根系与土壤有着极大的接触面,在植物和土壤之间进行着频繁的物质交换,彼此有着强烈影响,因此通过控制土壤因素就可影响植物的生长和产量。对动物来说,土壤是比大气环境更为稳定的生活环境,其温度和湿度的变化幅度要小得多,因此土壤常常成为动物的极好隐蔽所,在土壤中可以躲避高温、干燥、大风和阳光直射。由于在土壤中运动要比大气中和水中困难得多,所以除了少数动物(如蚯蚓、鼹鼠、竹鼠和穿山甲)能在土壤中掘穴居住外,大多数土壤动物都只能利用枯枝落叶层中的孔隙和土壤颗粒间的空隙作为自己的生存空间。

土壤是所有陆地生态系统的基底或基础,土壤中的生物活动不仅影响着土壤本身,而且也影响着土壤上面的生物群落。生态系统中的很多重要过程都是在土壤中进行的,其中特别是分解和固氮过程。生物遗体只有通过分解过程才能转化为腐殖质和矿化为可被植物再利用的营养物质,而固氮过程则是土壤氮肥的主要来源。这两个过程都是整个生物圈物质循环所不可缺少的过程。

深层土壤与温室气体

耕作、泥炭排水和毁林行为会导致土壤暴露于空气中,从而使温室气体释放出来。而土壤通过储存碳锁定温室气体,在对抗全球变暖中可起到重要作用。

当前主要基于测量的30厘米深来估计土壤有机碳的含量。这种方法已经在北美和欧洲演变,在那里的土壤通常更浅,而许多植物的根部也会延伸至更深的深度存储碳。该发现很鼓舞研究人员探索在更深层土壤中的储碳潜力,如亚马逊地区或澳大利亚。此前研究人员已在亚马逊地区深至8米的土壤采样。

此次土壤采样是在澳大利亚西南部的一系列地点进行的,样本取自地下近40米处,研究结果显示,深层土壤存储的碳比以前的报告所认为的多出达5倍以上。研究人员说:"估计这一发现对于全球碳储存、气候变化对全球潜在影响的建模及在碳循环中利用土地的变化可能具有重大启示。"

该研究首席研究员、默多克大学水资源管理和可持续发展专家理查德·哈珀教授说,这一发现扩大了我们既有的在土壤中潜在碳储存的概念。这种碳过去被忽视了,全球土壤中储存的碳有可能比以前认为的要更多,无论是土地利用变化或气候变化的结果将其释放是未知的。这也是他们为什么要进行这项研究的原因。

墨尔本大学园艺学教授雪·巴罗说,这项研究强调了土地利用变化对全球碳循环的显著影响,因为这种碳明显起源于这些景观较早的森林时代。

悉尼大学土壤碳倡议项目经理安德烈·科赫说,之前他们非常专注于获得从土壤顶部30厘米的剖面及地表深层的矿产和能源资源,但深层土壤是一个尚未被了解的前沿。管理和维护土壤中的碳是粮食、水安全、生物多样性和能源安全,以及气候调节的基础,如果可以管理深度土壤中的有机碳,将是一件好事。他同时表示,寻找管理深度土壤的碳量方法,不仅需要新的土壤管理措施和技术,也将需要得到公共政策对此的支持和鼓励。

一、生物因素

(3)土壤形成的生物因素

生物是土壤有机物质的来源和土壤形成过程中最活跃的因素。土壤的本质特征--肥力的产生与生物的作用是密切相关的。在生物作用下从岩石到土壤的形成过程见图9-7。

岩石表面在适宜的日照和湿度条件下滋生出苔薛类生物,它们依靠雨水中溶解的微量岩石矿物质得以生长,同时产生大量分泌物对岩石进行化学、生物风化;随着苔藓类的大量繁殖,生物与岩石之间的相互作用日益加强,岩石表面慢慢地形成了土壤;此后,一些高等植物在年幼的土壤上逐渐发展起来,形成土体的明显分化。在生物因素中,植物起着最为重要的作用。绿色植物有选择地吸收母质、水体和大气中的养分元素,并通过光合作用制造有机质,然后以枯枝落叶和残体的形式将有机养分归还给地表。不同植被类型的养分归还量与归还形式的差异是导致土壤有机质含量高低的根本原因。例如,森林土壤的有机质含量一般低于草地,这是因为草类根系茂密且集中在近地表的土壤中,向下则根系的集中程度递减,从而为土壤表层提供了大量的有机质,而树木的根系分布很深,直接提供给土壤表层的有机质不多,主要是以落叶的形式将有机质归还到地表。动物除以排泄物、分泌物和残体的形式为土壤提供有机质,并通过啃食和搬运促进有机残体的转化外,有些动物如蚯蚓、白蚁还可通过对土体的搅动,改变土壤结构、孔隙度和土层排列等。微生物在成土过程中的主要功能是有机残体的分解、转化和腐殖质的合成。

二、地形因素

(4)土壤形成的地形因素

地形对土壤形成的影响主要是通过引起物质、能量的再分配而间接地作用于土壤的。在山区,由于温度。降水和湿度随着地势升高的垂直变化,形成不同的气候和植被带,导致土壤的组成成分和理化性质均发生显著的垂直地带分化。对美国西南部山区土壤特性的考察发现,土壤有机质含量、总孔隙度和持水量均随海拔高度的升高而增加,而pH值随海拔高度的升高而降低[1]。此外,坡度和坡向也可改变水、热条件和植被状况,从而影响土壤的发育。在陡峭的山坡上,由于重力作用和地表径流的侵蚀力往往加速疏松地表物质的迁移,所以很难发育成深厚的土壤;而在平坦的地形部位,地表疏松物质的侵蚀速率较慢,使成土母质得以在较稳定的气候、生物条件下逐渐发育成深厚的土壤。阳坡由于接受太阳辐射能多于阴坡,温度状况比阴坡好,但水分状况比阴坡差,植被的覆盖度一般是阳坡低于阴坡,从而导致土壤中物理、化学和生物过程的差异。

三、时间因素

(5)土壤形成的时间因素

在上述各种成土因素中,母质和地形是比较稳定的影响因素,气候和生物则是比较活跃的影响因素,它们在土壤形成中的作用随着时间的演变而不断变化。因此,土壤是一个经历着不断变化的自然实体,并且它的形成过程是相当缓慢的。在酷热、严寒、干旱和洪涝等极端环境中,以及坚硬岩石上形成的残积母质上,可能需要数千年的时间才能形成土壤发生层,例如在沙丘土中,特别是在林下,典型灰壤的发育需要1000~1500年。但在变化比较缓和的环境条件中,以及利于成土过程进行的疏松成土母质上,土壤剖面的发育要快得多。

土壤发育时间的长短称为土壤年龄。从土壤开始形成时起直到目前为止的年数称为绝对年龄。例如,北半球现存的土壤大多是在第四纪冰川退却后形成和发育的。高纬地区冰碛物上的土壤绝对年龄一般不超过一万年,低纬未受冰川收用地区的土壤绝对年龄可能达到数十万年至百万年,其起源可追溯到第三纪。

由土壤的发育阶段和发育程度所决定的土壤年龄称为相对年龄。在适宜的条件下,成土母质首先在生物的作用下进入幼年土壤发育阶段,这一阶段的特点是土体很薄,有机质在表土积累,化学-生物风化作用与淋溶作用很弱,剖面分化为A层和C层,土壤的性质在很大程度上还保留着母质的特征。随着B层的形成和发育,土壤进入成熟阶段,这一阶段有机质积累旺盛,易风化的矿物质强烈分解,在淀积层中粘粒大量积聚,土壤肥力和自然生产力均达到最高水平。经过相当长的时间以后,成熟土壤出现强烈的剖面分化,出现E层,并使A层和B层的特征发生显著差异,有机质累积过程减弱,矿物质分解进入最后阶段,只有抗风化最强的矿物残留在土体中,淀积层中粘粒积聚形成粘盘,土壤进入老年阶段,这一阶段土壤的肥力和自然生产力都明显降低。

四、人类因素

(6)土壤形成的人类因素

在五大自然成土因素之外,人类生产活动对土壤形成的影响亦不容忽视,主要表现在通过改变成土因素作用于土壤的形成与演化。其中以改变地表生物状况的影响最为突出,典型例子是农业生产活动,它以稻、麦、玉米、大豆等一年生草本农作物代替天然植被,这种人工栽培的植物群落结构单一,必须在大量额外的物质、能量输入和人类精心的护理下才能获得高产。因此,人类通过耕耘改变土壤的结构、保水性、通气性;通过灌溉改变土壤的水分、温度状况;通过农作物的收获将本应归还土壤的部分有机质剥夺,改变土壤的养分循环状况;再通过施用化肥和有机肥补充养分的损失,从而改变土壤的营养元素组成、数量和微生物活动等。最终将自然土壤改造成为各种耕作土壤。人类活动对土壤的积极影响是培育出一些肥沃、高产的耕作土壤,如水稻土等;同时由于违反自然成土过程的规律,人类乱砍乱伐,乱扔垃圾、以及对有毒化学制剂的超量使用,水源污染,土壤污染,一些破坏良田土层的错误做法,造成了土壤退化如肥力下降、水土流失、盐渍化、沼泽化、荒漠化和。

亚、欧大陆

亚、欧大陆是最大的大陆。山地土壤占1/3,灰化土和荒漠土分别占16%和15%,黑钙土和栗钙土占13%。地带性土壤沿纬度水平分布由北至南依次为:冰沼土-灰化土-灰色森林土-黑钙土-栗钙土-棕钙土-荒漠土-高寒土-红壤-砖红壤。但在东、西两岸略有差异:大陆西岸从北而南依次为:冰沼土-灰化土-棕壤-褐土-荒漠土;大陆东岸自北而南依次为:冰沼土-灰化土-棕壤-红、黄壤-砖红壤。在灰化土和棕壤带中分布有沼泽土。半荒漠和荒漠土壤中分布着盐渍土。在印度德干高原上分布着变性土。

美洲

北美洲灰化土较多,约占23%。由于西部科迪勒拉山系呈南北走向伸延,从而加深了水热条件的东西差异,因此,北美洲西半部土壤表现明显的经度地带性分布。北美大陆西半部(灰化土带以南,95°W以西,不包括太平洋沿岸地带)由东而西的土壤类型依次为湿草原土-黑钙土-栗钙土-荒漠土;而在东部因南北走向的山体不高,土壤又表现出纬度地带性分布,由北至南依次为冰沼土-灰化土-棕壤-红、黄壤。北美灰化土带中有沼泽土,栗钙土带中有碱土,荒漠土带中有盐土。南美洲砖红壤、砖红壤性土的分布面积最大,几乎占全洲面积的一半,主要分布于南回归线以北地区,呈东西延伸。在南回归线以南地区,土壤类型逐渐转为南北延伸,自东而西依次大致为:红、黄壤-变性土-灰褐土、灰钙土,再往南则为棕色荒漠土。安第斯山以西地区土壤类型是南北向排列和延伸的,自北向南依次为:砖红壤-红褐土-荒漠土-褐土-棕壤。

非洲

非洲土壤以荒漠土和砖红壤、红壤为最多,前者占37%,后两者占29%。由于赤道横贯中部,土壤由中部低纬度地区向南北两侧成对称纬度地带性分布,其顺序是砖红壤-红壤-红棕壤和红褐土-荒漠土,至大陆南北两端为褐土和棕壤。但在东非高原因受地形的影响而稍有改变。在砖红壤带中分布有沼泽土,在沙漠化的热带草原、半荒漠和荒漠带中分布有盐渍土。

澳大利亚

土壤以荒漠土面积最大,占44%,次为砖红壤和红壤,占25%。土壤分布呈半环形,自北、东、南三方面向内陆和西部依次分布热带灰化土-红壤和砖红壤-变性土和红棕壤-红褐土和灰钙土-荒漠土。

土壤学是研究土壤及其生成的学科,是自然地理学的分支。它对研究植物的生长,繁殖以至分布都起着重要影响。 从农业角度来看,土壤是指陆地上能够让植物生长的疏松表层。

简介

凡是妨碍土壤正常功能,降低作物产量和质量,还通过粮食、蔬菜、水果等间接影响人体健康的物质,都叫做土壤污染物。

土壤污染的形成因素:由于人口急剧增长,工业迅猛发展,固体废物不断向土壤表面堆放和倾倒,有害废水不断向土壤中渗透,大气中的有害气体及飘尘也不断随雨水降落在土壤中,导致了土壤污染。

土壤污染物的来源广、种类多,大致可分为无机污染物和有机污染物两大类。无机污染物主要包括酸、碱、重金属(铜、汞、铬、镉、镍、铅等)盐类、放射性元素铯、锶的化合物、含砷、硒、氟的化合物等。有机污染物主要包括有机农药、酚类、氰化物、石油、合成洗涤剂、3,4-苯并以及由城市污水、污泥及厩肥带来的有害微生物等。

定义

当土壤中含有害物质过多,超过土壤的自净能力,就会引起土壤的组成、结构和功能发生变化,微生物活动受到抑制,有害物质或其分解产物在土壤中逐渐积累,通过"土壤→植物→人体",或通过"土壤→水→人体" 间接被人体吸收,达到危害人体健康的程度,就是土壤污染。

中国现状

据报道,目前我国受镉、砷、铬、铅等重金属污染的耕地面积近 2000 万公顷,约占总耕地面积的 1/5,其中工业"三废"污染耕地 1000 万公顷,污水灌溉的农田面积已达 330 多万公顷。例如:某省曾对 47 个县和郊区的 259 万公顷耕地(占全省耕地面积的五分之二)进行过调查。其结果表明,75% 的县已受到不同程度的重金属污染的潜在威胁,而且污染趋势仍在加重。

污水灌溉等废弃物对农田已造成大面积的土壤污染。如沈阳张士灌区用污水灌溉 20 多年后,污染耕地 2500 多公顷,造成了严重的镉污染,稻田含镉 5-7mg/kg。天津近郊因污水灌溉导致 2.3 万公顷农田受到污染。广州近郊因为污水灌溉而污染农田 2700 公顷,因施用含污染物的底泥造成 1333 公顷的土壤被污染,污染面积占郊区耕地面积的 46%。80 年代中期对北京某污灌区进行的抽样调查表明,大约 60% 的土壤和 36% 的糙米存在污染问题。

另一方面,全国有 1300~1600 万公顷耕地受到农药的污染。除耕地污染之外,我国的工矿区、城市也还存在土壤(或土地)污染问题。

中科院地理科学与资源环境研究所研究员陈同斌前后用了3年多的时间对北京市全市的土壤和蔬菜进行了大规模的取样分析和研究,发现土壤污染问题已经比较严重,并且已经影响到蔬菜等农产品的质量。

南京农业大学农业资源与生态环境研究所研究员潘根兴在2002年初做过一个南京市各城区的土壤重金属污染调查。结果同样很严重。超过70%的采样区域存在重金属污染,测出的最高铅含量超过900ppm,超过国家标准3倍以上。

陈同斌在2001年对北京市的公园土壤重金属污染做了一项调查,结果让人吃惊。被公认为城市中环境质量优良的公园存在着不容忽视的土壤重金属污染。而且公园建成的年代与土壤重金属污染的程度成一个指数关系。

危害

1. 土壤污染导致严重的直接经济损失--农作物的污染、减产。对于各种土壤污染造成的经济损失,尚缺乏系统的调查资料。仅以土壤重金属污染为例,全国每年就因重金属污染而减产粮食 1000 多万吨,另外被重金属污染的粮食每年也多达 1200 万吨,合计经济损失至少 200 亿元。

2. 土壤污染导致生物品质不断下降

我国大多数城市近郊土壤都受到了不同程度的污染,有许多地方粮食、蔬菜、水果等食物中镉、铬、砷、铅等重金属含量超标和接近临界值。

土壤污染除影响食物的卫生品质外,也明显地影响到农作物的其他品质。

有些地区污灌已经使得蔬菜的味道变差,易烂,甚至出现难闻的异味;农产品的储藏品质和加工品质也不能满足深加工的要求。

3. 土壤污染危害人体健康

土壤污染会使污染物在植(作)物体中积累,并通过食物链富集到人体和动物体中,危害人畜健康,引发癌症和其他疾病等。

4. 土壤污染导致其他环境问题

土地受到污染后,含重金属浓度较高的污染表土容易在风力和水力的作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。

途径

当土壤被病原体,有毒化学物质和放射性物质污染后,便能传播疾病,引起中毒和诱发癌症。

被病原体污染的土壤能传播伤寒、副伤寒、痢疾、病毒性肝炎等传染病。因土壤污染而传播的寄生虫病有蛔虫病和钩虫病等。人与土壤直接接触,或生吃被污染的蔬菜、瓜果,就容易感染这些寄生虫病。土壤对传播这些寄生虫病起着特殊的作用,因为在这些蠕虫的生活史中,有一个阶段必须在土壤中度过。例如,蛔虫卵一定要在土壤中发育成熟,钩虫卵一定要在土壤中孵出钩蚴才有感染性等。

结核病人的痰液含有大量结核杆菌,如果随地吐痰,就会污染土壤,水分蒸发后,结核杆菌在干燥而细小的土壤颗粒上还能生存很长时间,这些带菌的土壤颗粒随风进入空气,人通过呼吸,就会感染结核病。

有些人畜共患的传染病或与动物有关的疾病,也可通过土壤传染给人。例如,患钩端螺旋体病的牛、羊、猪、马等,可通过粪尿中的病原体污染土壤,这些钩端螺旋体在中性或弱碱性的土壤中能存活几个星期,并可通过粘膜、伤口或被浸软的皮肤侵入人体,使人致病。炭疽杆菌芽孢在土壤中能存活几年甚至几十年;被伤风杆菌、气性坏疽杆菌、肉毒杆菌等病原体,也能形成芽孢,长期在土壤中生存。破伤风杆菌、气性坏疽杆菌来自感染的动物粪便,特别是马粪。人们受外伤后,伤口被泥土污染,特别是深的穿刺伤口,很容易感染破伤风或气性坏疽病。此外,被有机废弃物污染的土壤,是蚊蝇孳生和鼠类繁殖的场所,而蚊、蝇和鼠类又是许多传染病的媒介,因此,被有机废物污染的土壤,在流行病学上被视为是特别危险的物质。

土壤被有毒化学物污染后,对人体的影响大都是间接的,主要是通过农作物、地面水或地下水对人体产生影响。在生产过磷酸钙工厂的周围,土壤中砷和氟的含量显著增高。铅、锌冶炼厂周围的土壤,不仅受到铅、锌、镉的严重污染,而且还受到含硫物质所形成的硫酸的严重污染。任意堆放的含毒废渣以及被农药等有毒化学物质污染的土壤,通过雨水的冲刷、携带和下渗,会污染水源。人、畜通过饮水和食物可引起中毒。

土壤被放射性物质污染后,通过放射性衰变,能产生α、β、γ射线,这些射线能穿透人体组织,使机体的一些组织细胞死亡。这些射线对机体既可造成外照射损伤,又可通过饮食或呼吸进入人体,造成内照射损伤,使受害者头昏、疲乏无力、脱发、白细胞减少或增多,发生癌变等。

20世纪70年代以来,通过对癌物质的研究,还发现许多工业城市及其近郊的土壤中含有苯并(a)芘等致癌物质。

被有机废弃物污染的土壤还容易腐败分解,散发出恶臭,污染空气,有机废弃物或有毒化学物质又能阻塞土壤孔隙,破坏土壤结构,影响土壤的自净能力;有时还能使土壤处于潮湿污秽状态,影响居民健康。

特点

土壤污染具有隐蔽性和滞后性。大气污染、水污染和废弃物污染等问题一般都比较直观,通过感官就能发现。而土壤污染则不同,它往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤污染从产生污染到出现问题通常会滞后较长的时间。如日本的"痛痛病"经过了10~20年之后才被人们所认识。

土壤污染的累积性。污染物质在大气和水体中,一般都比在土壤中更容易迁移。这使得污染物质在土壤中并不象在大气和水体中那样容易扩散和稀释,因此容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。

土壤污染具有不可逆转性。重金属对土壤的污染基本上是一个不可逆转的过程,许多有机化学物质的污染也需要较长的时间才能降解。譬如:被某些重金属污染的土壤可能要100~200年时间才能够恢复。

土壤污染很难治理。如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用也有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。

土壤污染一旦发生,仅仅依靠切断污染源的方法则往往很难恢复,有时要靠换土、淋洗土壤等方法才能解决问题,其他治理技术可能见效较慢。因此,治理污染土壤通常成本较高、治理周期较长。鉴于土壤污染难于治理,而土壤污染问题的产生又具有明显的隐蔽性和滞后性等特点,因此土壤污染问题一般都不太容易受到重视。

分类

土壤污染物可分为三类。

一类是病原体,包括肠道致病菌、肠道寄生虫(蠕虫卵)、破伤风杆菌、霉菌和病毒等。它们主要来自做肥料的人畜粪便和垃圾。或直接用生活污水灌溉农田,都会使土壤受到病原体的污染。这些病原体能在土壤中生存较长时间,如痢疾杆菌能在土壤中生存22~142天,结核杆菌能生存一年左右,蛔虫卵能生存315~420天,沙门氏菌能生存35~70天。

第二类是有毒化学物质,如镉、铅等重金属以及有机氯农药等。它们主要来自工业生产过程中排放的废水、废气、废渣以及农业上大量施用的农药和化肥。

第三类是放射性物质,它们主要来自核爆炸的大气散落物,工业、科研和医疗机构产生的液体或固体放射性废弃物,它们释放出来的放射性物质进入土壤,能在土壤中积累,形成潜在的威胁。由核裂变产生的两个重要的长半衰期放射性元素是90锶(半衰期为28年)和137铯(半衰期为30年)。空气中的放射性90锶可被雨水带入土壤中。因此,土壤中含90锶的浓度常与当地降雨量成正比。

土壤文献

砂土类土壤黏土类土壤 砂土类土壤黏土类土壤

格式:pdf

大小:6.0MB

页数: 36页

评分: 4.8

砂土类土壤黏土类土壤

立即下载
不同土壤-南天竹系统的土壤酶活性分异 不同土壤-南天竹系统的土壤酶活性分异

格式:pdf

大小:6.0MB

页数: 5页

评分: 4.4

石灰岩退化生态系统的恢复离不开土壤基质的改善。采用盆栽法,研究了生长在黑色石灰土、紫色土、黄壤3种不同土壤类型中的南天竹土壤酶活性的情况。试验表明:淀粉酶、碱性磷酸酶、天门冬酰胺酶的活性均表现出黑色石灰土>紫色土>黄壤,三者之间差异显著(p<0.05)。而脲酶、多酚氧化酶和过氧化物酶活性则是紫色土>黑色石灰土>黄壤,三者之间差异也达到显著水平(p<0.05)。土壤理化性质与土壤酶活性的相关分析说明土壤pH和全磷(P)对土壤酶的活性影响不大,而不同土壤类型中的全氮(N)和土壤含水率与部分土壤酶活性呈显著相关。不同土壤类型的土壤酶相关性表现各异。

立即下载

土壤物理性质之一。指土壤中不同大小直径的矿物颗粒的组合状况。土壤质地与土壤通气、保肥、保水状况及耕作的难易有密切关系;土壤质地状况是拟定土壤利用、管理和改良措施的重要依据。

土壤的两种彼此关联的物理性质,即土壤电性和磁性的统称。土壤电磁性的测定对于土壤发生分类的研究、土壤调查和制图、土建工程的地基处理以及农田生态系统的调控和环境保护都具有重要意义。

土壤物理土壤电性

指不同于土壤电化学性质的土壤电物理性质,包括土壤自然电场(电位)、电阻(电导)、电渗、介电常数等。其中,尤以土壤电阻和自然电场更为重要。土壤电阻是土壤电导的倒数,常用以确定土壤含水量或盐渍度,进而可确定某些土壤的分布界线等。土壤自然电场是土壤中各种带电土粒和盐类离子所具有电场。通过测定土壤自然电场,可以了解某些成土过程的信息、区分复域土壤、确定地下水位和流向等。成土过程和耕作、施肥、灌排等所造成的土壤盐分离子的离解、解吸、淋溶、淀积、吸附等,可使剖面中自然电场产生分异,从而显示其发生学特征。如碱土和淡栗钙土等淋溶层的自然电场比淀积层高40~50毫伏,而淡栗钙土淀积层的自然电场又比碱化层高15~25毫伏。各发生层的界面上的电位差较大。

土壤物理土壤磁性

按磁性特征,土壤组分可分反磁质、顺磁质和亚铁磁质3类。由于反磁质的磁性极其微弱,土壤磁性主要决定于后两类,尤其是亚铁磁质。但土壤中的铁、锰化合物多为顺磁质,只有磁铁矿、磁赤铁矿及其含钛系列等少数几种为亚铁磁质。土壤磁性与土壤矿物的组成关系密切。成土过程中土壤铁、锰物质的淋移、淀积和形态转化,特别是顺磁质和亚铁磁质的相互转化,是造成土壤磁性消长的原因。

土壤磁性包括磁化率、剩余磁化强度(剩磁)、饱和磁化强度、矫顽力等,以前二者更为重要。土壤磁化率用以量度磁化的难易,其含义可用下式表示:K=J/H。式中K为溶积磁化率,J为磁化强度(单位容积的磁矩),H为外磁场强度,为消除土壤松紧状况的影响,则可用比磁化率表示: X=K/d。式中X为比磁化率;d为土壤容重剩余磁化强度,指物质在外磁场中磁化后再撤离外磁场时,反磁质和顺磁质的感应磁性立即消失,而铁磁质和亚铁磁质仍可长久保持的一部分感应磁化强度。土壤自然剩磁则是土壤形成过程中各种磁化作用保留下的剩磁,包括热剩磁、沉积剩磁、化学剩磁和沉滞剩磁等的综合。土壤剖面中各层的剩磁与感应磁化强度(由现今的地磁场影响产生)的比值称Q值,可作为土壤鉴定的依据。

土壤物理电磁性调节

土壤电磁性的调节主要包括电改良和磁处理两个方面。土壤电改良即利用人工直流电加速土壤中的电化学反应和电渗过程,可用于促进盐碱土的淋盐、脱碱和粘质土的排水、加固,达到改善土壤理化性质的目的。进行时一般将阳极置于土表、阴极置于排水沟底部,以利Na的淋洗。直流电引起阳极区的土壤溶液发生酸化,促使钙的活化和钠的排除,进而促进土壤团聚化,可显著提高土壤渗透性能。电流方向宜交替变换,以避免土壤的局部性酸化造成土体理化性质的不均匀性,以及电极材料被腐蚀而产生金属离子毒害。

土壤磁处理即将土壤置于外磁场中使其产生剩磁,或将含铁的工矿废渣经磁处理后用作土壤改良剂。前者可改善碱化土壤的微结构性;后者可改善粘质土壤,特别是潜育性土壤的理化性质。

本书可作为土壤、农田水利、环境保护类专业研究生的教科书,并可供有关专业技术人员参考。2100433B

土壤制图程序一般分为:野外土壤草图测绘、室内底图清绘、整饰 3个步骤。野外草图测绘是运用土壤地理基础理论和土壤野外调查技术,认识并区分调查地区土壤类型、组合及其分布变化规律,将其界线勾绘并标记在地形底图上。这种直接测绘的土壤图也是编制中、小比例尺土壤图的重要基础和依据。

土壤相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏