磁流体力学基本信息

中文名 磁流体力学 外文名 magneto-fluid mechanics
提出时间 1832年 提出者 法拉第

磁流体力学是结合经典流体力学和电动力学的方法,研究导电流体和磁场相互作用的学科,它包括磁流体静力学和磁流体动力学两个分支。

磁流体静力学研究导电流体在磁场力作用于静平衡的问题;磁流体动力学研究导电流体与磁场相互作用的动力学或运动规律。磁流体力学通常指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形。

导电流体有等离子体和液态金属等。等离子体是电中性电离气体,含有足够多的自由带电粒子,所以它的动力学行为受电磁力支配。宇宙中的物质几乎全都是等离子体,但对地球来说,除大气上层的电离层和辐射带是等离子体外,地球表面附近(除闪电和极光外)一般不存在自然等离子体,但可通过气体放电、燃烧、电磁激波管、相对论电子束和激光等方法产生人工等离子体。

能应用磁流体力学处理的等离子体温度范围颇宽,从磁流体发电的几千度到受控热核反应的几亿度量级(还没有包括固体等离子体)。因此,磁流体力学同物理学的许多分支以及核能、化学、冶金、航天等技术科学都有联系。

磁流体力学造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
流体 牌号:热轧,规格(mm):Φ219×6,外径Φ(mm):219,壁厚(mm):6 查看价格 查看价格

新冶特钢

t 13% 长沙腾宇金属材料有限公司
流体 牌号:热轧,规格(mm):Φ57×3.5,外径Φ(mm):57,壁厚(mm):3.5 查看价格 查看价格

临沂金正阳

t 13% 长沙腾宇金属材料有限公司
流体 牌号:热轧,规格(mm):Φ108×4.5,外径Φ(mm):108,壁厚(mm):4.5 查看价格 查看价格

临沂金正阳

t 13% 长沙腾宇金属材料有限公司
流体 牌号:冷拨,规格(mm):Φ50×5,外径Φ(mm):50,壁厚(mm):5 查看价格 查看价格

山东金宝诚

t 13% 长沙腾宇金属材料有限公司
流体 牌号:热轧,规格(mm):Φ50×5,外径Φ(mm):50,壁厚(mm):5 查看价格 查看价格

临沂金正阳

t 13% 长沙腾宇金属材料有限公司
流体 牌号:热观,规格(mm):Φ133×4.5,外径Φ(mm):133,壁厚(mm):4.5 查看价格 查看价格

临沂金正阳

t 13% 长沙腾宇金属材料有限公司
流体 牌号:热轧,规格(mm):Φ159×6,外径Φ(mm):159,壁厚(mm):6 查看价格 查看价格

临沂金正阳

t 13% 长沙腾宇金属材料有限公司
流体 牌号:热轧,规格(mm):Φ273×7,外径Φ(mm):273,壁厚(mm):7 查看价格 查看价格

新冶特钢

t 13% 长沙腾宇金属材料有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
自发电一焊机 305A 查看价格 查看价格

台班 韶关市2010年8月信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 汕头市2012年1季度信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 汕头市2011年4季度信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 汕头市2011年2季度信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 广州市2011年1季度信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 汕头市2011年1季度信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 汕头市2010年1季度信息价
二氧化碳气保护焊机 电流250A 查看价格 查看价格

台班 广州市2009年4季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
流体 219×10 20|9498t 4 查看价格 天津市光辉敬业钢铁贸易有限公司 天津  天津市 2015-12-14
流体 Ф325×9-20#(GB/T8163-1999)|6436t 4 查看价格 山西振企商贸有限公司 山西  太原市 2015-11-28
流体 Ф377×10 20#(GB/T3087-1999)|4939t 4 查看价格 西安兆丰金属材料有限公司 陕西  西安市 2015-11-26
流体 Ф426×11-20#(GB/T3087-1999)|272t 4 查看价格 山西振企商贸有限公司 山西  太原市 2015-11-05
流体 Ф50×5 材质20#8163|9735t 4 查看价格 福州华正兴贸易有限公司 福建  福州市 2015-10-28
流体 108×4|4696t 4 查看价格 天津宝通达钢铁贸易有限公司 天津  天津市 2015-10-26
流体 108×10|4348t 4 查看价格 天津宝通达钢铁贸易有限公司 天津  天津市 2015-10-23
流体 Ф60×4 材质20#8163|3089t 4 查看价格 福州华正兴贸易有限公司 福建  福州市 2015-09-30

1832年M.法拉第首次提出有关磁流体力学问题。他根据海水切割地球磁场产生电动势的想法,测量泰晤士河两岸间的电位差,希望测出流速,但因河水电阻大、地球磁场弱和测量技术差,未达到目的。1937年J. F.哈特曼根据法拉第的想法,对水银在磁场中的流动进行了定量实验,并成功地提出粘性不可压缩磁流体力学流动(即哈特曼流动)的理论计算方法。

1940~1948年阿尔文提出带电单粒子在磁场中运动轨道的“引导中心”理论、磁冻结定理、磁流体动力学波(即阿尔文波)和太阳黑子理论,1949年他在《宇宙动力学》一书中集中讨论了他的主要工作,推动了磁流体力学的发展。1950年伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束,就是利用这个原理来约束温度高达一亿度量级的等离子体。

然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。此外,1950年,N. 赫罗夫森和范德胡斯特论证了有三种扰动波(即阿尔文波、快磁声波和慢磁声波)存在。

磁流体力学以流体力学和电动力学为基础﹐把流场方程和电磁场方程联立起来﹐引进了许多新的特徵过程﹐因而内容十分丰富。宇宙磁流体力学更有其特色。首先﹐它所研究的对象的特徵长度一般来说是非常大的﹐因而电感的作用远远大于电阻的作用。其次﹐其有效时间非常久﹐所以由电磁原因引起的某些作用力纵然不大﹐却能产生重大效应。磁流体力学大体上可以和流体力学平行地进行研究﹐但因磁场的存在也具有自己的特点﹕在磁流体静力学中的平衡方程﹐和流体静力学相比﹐增加了磁应力部分﹐它研究磁场的“运动”﹐即在介质流动下磁场的演变。与正压流体中的涡旋相似﹐磁场的变化也是由对流和扩散两种作用引起的。如果流体是理想导体﹐磁力线则冻结在流体上﹐即在同一磁力线上的质点恒在同一磁力线上﹐如果电导率是有限的﹐则磁场还要扩散。两种作用的强弱取决于磁雷诺数4πUL/c(c为光速﹐为电导率﹐U和L分别为问题的特徵速度和特徵长度)的大小。研究流动如何产生和维持天体中磁流发电机制(见太阳平均磁流发电机机制)﹐目前大多是以运动学为基础的。

磁流体力学常见问题

  • 水泵流体力学

    《流体力学与水泵实验教程》结合环境、给排水、建筑、土木、机械、采矿、交通等专业的流体力学、水力学及水泵与水泵站课程的教学要求,按照各专业最新的实验教学大纲编写。内容包括流体静力学实验,不可压缩流体恒定...

  • 流体力学书本

    周谟仁主编,《流体力学泵与风机》,中国建筑工业出版社出版 付祥钊主编,《流体输配管网》,中国建筑工业出版社出版 蔡增基主编,《流体力学泵与风机》第5版 那你可查看: 陈耀宗、姜文源等主编的《建筑给水排...

  • 流体力学,压缩系数

    压缩系数中的1/V表示压缩系数是指流体单位体积的压缩程度。取单位体积的压缩程度才能反映不同流体或相同流体在不同外界环境下被压缩的真实程度。比如,一亿升的空气被压缩了2升的体积和10升空气被压缩了1升,...

导电流体在电磁场里运动时,流体中就会产生电流。此电流与磁场相互作用,产生洛伦兹力,从而改变流体的运动,同时此电流又导致电磁场的改变。对这类问题进行理论探讨,必须既考虑其力学效应,又考虑其电磁效应。磁流体力学包括磁流体静力学和磁流体动力学。磁流体静力学研究导电流体在电磁力作用下的静平衡问题,如太阳黑子理论、受控热核聚变的磁约束机制等。磁流体动力学研究导电流体与电磁场相互作用时的运动规律,如各种磁流体动力学流动和磁流体动力学波等。但磁流体力学通常即指磁流体动力学,而磁流体静力学被看作磁流体动力学的特殊情形。

等离子体和液态金属都是导电流体。等离子体包括99%以上的宇宙物质,等离子体是电中性电离气体,含有足够多的自由带电粒子,所以它的动力学行为受电磁力支配。后者包括核动力装置中的携热介质(如钠、钾、钠钾合金)、化学工业中的置换剂(如钠、钾、汞)、冶金铸造工业中的熔融金属等。地球表面一般不存在自然等离子体,但可因核辐射、气体放电、燃烧、电磁激波、激光等方法产生人工等离子体。因此,磁流体力学不仅与等离子体物理学有联系,还在天体物理研究(如磁场对日冕、黑子、耀斑的影响)、受控热核聚变和工业新技术(如电磁泵、电弧加热器、磁流体发电、电磁输送、电磁推进等)中得到发展和应用。

首先是建立磁流体力学基本方程组,其次是用这个方程组来解决各种问题。后者主要包括:

磁流体力学第一部分

①忽略磁场力对流体的作用,单独考虑理想导电流体运动对磁场影响的问题,或流体静止时,流体电阻对磁场影响的问题,其中包括磁冻结和磁扩散(见磁流体力学基本方程组)。

磁流体力学第二部分

②通过磁场力来考察磁场对静止导电流体或理想导电流体的约束机制。这个问题是磁流体静力学的研究范畴,对受控热核反应十分重要。磁流体静力学在天体物理中,例如在研究太阳黑子的平衡、日珥的支撑、星际间无作用力场等问题中也很重要。

磁流体力学第三部分

③研究磁场力对导电流体定常运动的影响。方程的非线性使磁流体动力学流动的数学分析复杂化,通常要用近似方法或数值法求解。对于一般的磁流体动力学流动虽然都有相应的研究,但仅少数有精确解,如哈特曼流动、库埃特流动等。它们虽然是简化情况的解,然而清晰地阐明了基本的流动规律,利用这些规律至少可以定性地讨论更复杂的磁流体动力学流动。

磁流体力学第四部分

④研究磁流体动力学波,包括小扰动波、有限振幅波和激波。了解等离子体中波(磁流体动力学波是其中一部分)的传播规律,就可以探测等离子体的某些性质。此外,激波理论在电磁激波管、天体物理和地球物理上都有重要的应用。

V. C. A. Ferraro and C. Plumpton, Introduction to Magneto-fluid Mechanics, Oxford Univ. Press, London, 1961.

T. J. M. 博伊德、J. J. 桑德森著,戴世强、陆志云译:《等离子体动力学》,科学出版社,北京,1977。(T. J. M. Boyd and J. Sanderson, Plasma Dynamics, Nelson, London, 1969.)

M. Mitchner and C. H. Kruger Jr., Partially Ionized Cases, John Wiley & Sons, New York, 1973.

Shih-I Pai, Magnetogasdynamics and Plasma Dynamics, Springer-VerJag, Vienna, 1961.

磁流体力学主要应用于三个方面:天体物理、受控热核反应和工业。

磁流体力学天体物理、太阳物理和地球物理方面

宇宙中恒星和星际气体都是等离子体,而且有磁场,故磁流体力学首先在天体物理、太阳物理和地球物理中得到发展和应用。当前,关于太阳的研究课题有:太阳磁场的性质和起源,磁场对日冕、黑子、耀斑的影响。此外还有:星际空间无作用力场存在的可能性,太阳风与地球磁场相互作用产生的弓形激波,新星、超新星的爆发,地球磁场的起源,等等。

磁流体力学受控热核反应方面

受控热核方应方面 这方面的应用有可能使人类从海水中的氘获取巨大能源。受控热核反应的目的就是把轻元素组成的气体加热到足够发生核聚变的高温,并约束它足够的时间,以使核反应产生的能量大于所消耗的能量。对氘、氚混合气来说,要求温度达到5000万到1亿开并要求粒子密度和约束时间的乘积不小于10秒/厘米(劳孙条件)。托卡马克(环形磁约束装置)在受控热核反应研究中显出优越性。美、苏和一些西欧国家各自在托卡马克的研究上取得进展,但只得到单项指标满足劳孙条件的等离子体,没有得到温度、密度和约束时间都满足劳孙条件的等离子体。磁镜、托卡马克和其他磁约束装置的运行范围都受稳定性的限制,即电流或粒子密度越大,稳定性越差,所以必须开展对等离子体中的平衡和大尺度不稳定性预测的磁流体力学研究,以期得到稳定的并充分利用磁场的托卡马克磁约束装置。

磁流体力学工业方面

磁流体力学除了与开发和利用核聚变能有关外,还与磁流体发电密切联系。磁流体发电的原理是用等离子体取代发电机转子,省去转动部件,这样可以把普通火力发电站或核电站的效率提高15〜20%,甚至更高,既可节省能源,又能减轻污染。为了提高磁流体发电装罝的热效率,必须运用磁流体力学来分析发电通道中的流动规律,传热、传质规律和电特性。研究利用煤粉作燃料的磁流体发电对产煤丰富的国家有重要意义,这种研究目前正向工业发电阶段发展。苏联已实现天然气磁流体发电。

用导电流体取代电动机转子的设备,即用磁力驱动导电流体的装置有电磁泵和磁流体力学空间推进器(见电磁推进)。电磁泵已用于核能动力装置中传热回路内液态金属的传输,冶金和铸造工业中熔融金属的自动定量浇注和搅拌,化学工业中汞、钾、钠等有害和危险流体的输送等方面。电磁推进研究用磁场力加速等离子体以期得到比化学火箭大得多的比冲。

飞行器再入大气层时,激波、空气对飞行器的摩擦,使飞行器的表面空气受热而电离成为等离子体,因此利用磁场可以控制对飞行器的传热和阻力。但由于磁场装置过重,这种设想尚未能实现。

磁流体力学其他

此外,电磁流量计、电磁制动、电磁轴承理论、电磁激波管等也是磁流体力学在工业应用上所取得的成就。

关于低温等离子体技术,见等离于体的工业应用。

研究方法等离子体的密度范围很宽。对于极其稀簿的等离子体,粒子同的碰撞和集体效应可以忽略,可采用单粒子轨道理论研究等离子体在磁场中的运动。对于稠密等离子体,粒子间的碰撞起主要作用,研究这种等离子体在磁场中的运动有两种方法,一是统计力学方法,即所谓等离子体动力论,它从微观出发,把气体当作正、负粒子和中性粒子的混含物,并考虑粒子之同的相互碰撞影响,用统计方法研究等离子体在磁场中的宏观运动;—是连续介质力学方法即磁流体力学,把等离子体当作连续介质(见连续介质假设)来研究它在磁场中的运动。等离子体动力论对等离子体作最基本的描述,分析深刻,而磁流体力学则是它的一种宏观近似,所以用等离子体动力论能判断磁流体力学处理实际问题的有效性。此外,等离子体动力论还可用来计算磁流体力学中的一切输运系数(如扩散、粘性、热传导和电阻系数等)并讨论它们的物理机制。但这种方法的数学分析很困难,故在处理实际问瓶时,应用磁流体力学比较方便,而输运系数则由实验测定或用等离子体动力学分析计算。对无碰撞的等离子体,有时也可应用流体动力学方法,例如流体粒子的无规运动速度比宏观速度小得多,即压力和温度可以忽略时,可用冷等离子体模型和方程处理等离子在电磁场中的运动。固态等离子体和冷等离子体的模型很近似。尽管可以应用上述较简单的磁流体力学理论解决实际问题,但在稀薄气体的某些场合下,只有动力论的描述才是恰当的。例如平衡等离子体中的电子等离子体振荡所受的阻尼(即朗道阻尼)问题,是不可能用磁流体力学模型描述的,必须用动力论方法才能解决。

磁流体力学是在非导电流体力学的基础上研究导电流体中流场和磁场的相互作用的。进行这种研究必须对经典流体力学加以修正,以便得到磁流体力学基本方程组,包括考虑介质运动的电动力学方程组和考虑电磁场作用的流体力学方程组。电动力学方程组包含电导率、电容率、磁导率;流体力学方程组包含粘性系数、热导率、气体比热等物理参量。它们有时是常数,有时是其他量的函数。磁流体力学基本方程组具有非线性且包含方程个数又多,所以求解困难。但在实际问题中往往不需要求最一般形式的方程组的解,而只需求某一特殊问题的方程组的解。一般应用量纲分析和相似律求得表征一个物理问题的相似准数,并简化方程,即可得到有实用价值的解。

磁流体力学基本方程组具有非线性且包含方程个数又多,造成求解困难。但在实际问题中往往不需要求最一般形式的方程组的解,而只需求某一特殊问题的方程组的解。因此,在利用磁流体力学基本方程组来解决种种实际问题时,可在实验或观测的基础上,建立表征研究对象主要实质的物理模型来简化基本方程组。一般应用量纲分析和相似律求得表征一个物理问题的相似准数,并简化方程,从而得到有实用价值的解。磁流体力学相似准数有雷诺数、磁雷诺数、哈特曼数(见哈特曼流动)、马赫赫、磁马赫数、磁力数、相互作用数等。求解简化后的方程组不外是分桁法和数值法。利用计算机技术和计算流体力学方法可以求解较复杂的问题。

磁流体力学的理论很难象普通流体力学理论那样得到充分的验证。由于在常温下可供选择的介质很少,同时需要很强的磁场才能观察到磁流体力学现象,故不易进行模似。早期是用水银进行实验,但水银在磁场中运动时只呈现出不可压缩流体现象,而等离子体处于高温状态,现象复杂,带来许多有待研究的诊断问题(见等离子体诊断)。模拟天体大尺度的磁流体力学问厘更不易在实验室中实现。所以磁流体力学的理论有的可以得到定量验证,有的只能得到定性或间接的验证。当前有关磁流体力学的实验是在各种等离子体发生器和受控热核反应装置中进行的。

磁流体力学磁流体发电技术

就是用燃料(石油、天然气、燃煤、核能等)直接加热成易于电离的气体,使之在2000℃的高温下电离成导电的离子流,然后让其在磁场中高速流动时,切割磁力线,产生感应电动势,即由热能直接转换成电流,由于无需经过机械转换环节,所以称之为"直接发电",其燃料利用率得到显著提高,这种技术也称为"等离子体发电技术"。

磁流体发电是一种新型的高效发电方式,其定义为当带有磁流体的等离子体横切穿过磁场时,按电磁感应定律,由磁力线切割产生电;在磁流体流经的通道上安装电极和外部负荷连接时,则可发电。

为了使磁流体具有足够的电导率,需在高温和高速下,加上钾、铯等碱金属和加入微量碱金属的惰性气体(如氦、氩等)作为工质,以利用非平衡电离原理来提高电离度。前者直接利用燃烧气体穿过磁场的方式叫开环磁流体发电,后者通过换热器将工质加热后再穿过磁场的叫闭环磁流体发电。

燃煤磁流体发电技术--亦称为等离子体发电,就是磁流体发电的典型应用,燃烧煤而得到的2.6×106℃以上的高温等离子气体并以高速流过强磁场时,气体中的电子受磁力作用,沿着与磁力线垂直的方向流向电极,发出直流电,经直流逆变为交流送入交流电网。

磁流体发电本身的效率仅20%左右,但由于其排烟温度很高,从磁流体排出的气体可送往一般锅炉继续燃烧成蒸汽,驱动汽轮机发电,组成高效的联合循环发电,总的热效率可达50%~60%,是目前正在开发中的高效发电技术中最高的。同样,它可有效地脱硫,有效地控制NOx的产生,也是一种低污染的煤气化联合循环发电技术。

在磁流体发电技术中,高温陶瓷不仅关系到在2000~3000K磁流体温度能否正常工作,且涉及通道的寿命,亦即燃煤磁流体发电系统能否正常工作的关键,目前高温陶瓷的耐受温度最高已可达到3090K。

磁流体力学磁流体发电的原理

根据电磁感应原理,用导电流体(气体或液体)与磁场相对运动而发电。

磁流体发电按工质的循环方式分为开式循环系统、闭式循环系统和液态金属循环系统。最简单的开式磁流发电机由燃烧室、发电通道和磁体组成。工作过程是:在燃料燃烧后产生的高温燃气中,加入易电离的钾盐或钠盐,使其部分电离,经喷管加速,产生温度达3000℃、速度达1000米/秒的高温高速导电气体(部分等离子体),导电气体穿越置于强磁场中的发电通道,作切割磁力线的运动,感生出电流。磁流体发电机没有运动部件,结构紧凑,起动迅速,环境污染小,有很多优点。特别是它的排气温度高达2000℃,可通入锅炉产生蒸汽,推动汽轮发电机组发电。这种磁流体-蒸汽动力联合循环电站,一次燃烧两级发电,比现有火力发电站的热效率高10-20%,节省燃料30%,是火力发电技术改造的重要方向。磁流体发电的研究始于20世纪50年代末,被认为是最现实可行、最有竞争力的直接发电方式。它涉及到磁流体动力学、等离子物理、高温技术及材料、低温超导技术和热物理等领域,是一项大型工程性课题。许多先进国家都把它列为国家重点科研项目,有的建立国际间协作关系,以期早日突破。

从发电的机理上看,磁流体发电与普通发电一样,都是根据法拉第电磁感应定律获得电能。所不同的是,磁流体发电是以高温的导电流体(在工程技术上常用等离子体)高速通过磁场,以导电的流体切割磁感线产生电动势。这时,导电的流体起到了金属导线的作用。

磁流体发电中所采用的导电流体一般是导电的气体,也可以是液态金属。我们知道,常温下的气体是绝缘体,只有在很高的温度下,例如6000K以上,才能电离,才有较大的导电率。而磁流体发电一般是采用煤、石油或天然气作燃料,燃料在空气中燃烧时,即使把空气预热到1400K,也只能使空气达到3000K的温度,这时气体的导电率还不能达到所需的值,而且即使再提高温度,导电率也提高不了多少,却给工程带来很大困难。那么如何使气体在较低的温度下就能导电,并有较高的导电率"para" label-module="para">

磁流体发电是一种新型的发电方法。它把燃料的热能直接转化为电能,省略了由热能转化为机械能的过程,因此,这种发电方法效率较高,可达到60%以上。同样烧一吨煤,它能发电4500千瓦时,而汽轮发电机只能发出3000千瓦时电。对环境的污染也小

磁流体发电中,导电流体单位体积的输出功率We为

We=σv 2B 2k(1-k)式中σ为导电流体的电导率,v为流体的运动速度,B为磁场的磁通密度,k为电负载系数。典型的数据是σ=10~20西/米,B=5~6特,v=600~1000米/秒,k=0.7~0.8, We在25~150兆瓦/米3。80年代后期,世界上技术最先进的磁流体发电装置是莫斯科北郊U-25装置。它是以天然气作燃料的开环装置,额定功率为20.5兆瓦。

磁流体力学磁流体发电的历史

1832年法拉第首次提出有关磁流体力学问题。他根据海水切割地球磁场产生电动势的想法,测量泰晤士河两岸间的电位差,希望测出流速,但因河水电阻大、地球磁场弱和测量技术差,未达到目的。1937年哈特曼根据法拉第的想法,对水银在磁场中的流动进行了定量实验,并成功地提出粘性不可压缩磁流体力学流动(即哈特曼流动)的理论计算方法。

1940~1948年阿尔文提出带电单粒子在磁场中运动轨道的“引导中心”理论、磁冻结定理、磁流体动力学波(即阿尔文波)和太阳黑子理论,1949年他在《宇宙动力学》一书中集中讨论了他的主要工作,推动了磁流体力学的发展。1950年伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束,就是利用这个原理来约束温度高达一亿度量级的等离子体。

然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。

美国是世界上研究磁流体发电最早的国家,1959年,美国就研制成功了11.5千瓦磁流体发电的试验装置。60年代中期以后,美国将它应用在军事上,建成了作为激光武器脉冲电源和风洞试验电源用的磁流体发电装置。

日本和前苏联都把磁流体发电列入国家重点能源攻关项目,并取得了引人注目的成果。前苏联已将磁流体发电用在地震预报和地质勘探等方面。前苏联在1971年建造了一座磁流体——蒸汽联合循环试验电站,装机容量为7.5万千瓦,其中磁流体电机容量为2.5万千瓦。1986年,前苏联开始兴建世界上第一座50万千瓦的磁流体和蒸汽联合电站,这座电站使用的燃料是天然气,它既可供电,又能供热,与一般的火力发电站相比,它可节省燃料20%。

磁流体发电为高效率利用煤炭资源提供了一条新途径,所以世界各国都在积极研究燃煤磁流体发电。目前,世界上有17个国家在研究磁流体发电,而其中有13个国家研究的是燃煤磁流体发电,包括中国、印度、美国、波兰、法国、澳大利亚、前苏联等。

我国于本世纪60年代初期开始研究磁流体发电,先后在北京、上海、南京等地建成了试验基地。根据我国煤炭资源丰富的特点,我国将重点研究燃煤磁流体发电,并将它作为“863”计划中能源领域的两个研究主题之一,争取在短时间内赶上世界先进水平。

作为一种高技术,磁流体发电推动着工程电磁流体力学这门新兴学科和高温燃烧、氧化剂预热、高温材料、超导磁体、大功率变流技术、高温诊断和降低工业动力装置有害排放物的先进方法等一系列新技术的发展。这些科学成果和技术成就可以得到其他方面的应用,并有着美好的发展前景。

综上所述,从高效率、低污染、高技术的考虑,使得磁流体发电从其原理性实验成功开始,就迅速得到了全世界的重视,许多国家都给予了持续稳定的支持。

磁流体力学文献

工程流体力学论文 工程流体力学论文

格式:pdf

大小:24KB

页数: 2页

评分: 4.6

工程流体力学论文 丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、 数学家、医学家。 1700年 2月 8日生于荷兰格罗宁根。著名的伯努 利家族中最杰出的一位。他是数学家 J.伯努利的次子,和他的父辈 一样,违背家长要他经商的愿望,坚持学医,他曾在海得尔贝格、斯 脱思堡和巴塞尔等大学学习哲学、论理学、医学。 1721年取得医学 硕士学位。努利在 25岁时 (1725) 就应聘为圣彼得堡科学院的数学院 士。8 年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授, 1750年成为物理学教授。在 1725~1749年间,伯努利曾十次荣获法 国科学院的年度奖。 丹尼尔受父兄影响,一直很喜欢数学。 1724年,他在威尼斯旅途 中发表《数学练习》,引起学术界关注,并被邀请到圣彼得堡科学院 工作。同年,他还用变量分离法解决了微分方程中的里卡提方程。 在伯努利家族中

立即下载
流体力学结课论文 流体力学结课论文

格式:pdf

大小:24KB

页数: 13页

评分: 4.3

离心通风机气体流动的流体力学分析 摘要 :本文从流体力学的角度进行了详尽的分析研究,介绍了风机的选型对抽风 量的影响,探讨了管路系统中的摩擦阻力、局部阻力、风管直径大小、弯头的曲 率半径等对风量风压的影响; 同时介绍了离心风机特性、 抽风系统的管网特性, 管网中实际阻力与风机额定风压及风量的关系;应用计算流体力学软件 FLUENT 对 4-73 №10D离心式通风机内部的三维气体流动进行了数值模拟分析,重点分 析了各个部分的压强和速度分布。 关键词: 管网特性;离心式通风机;三维数值模拟;压力场;流场 1 引言 由于通风机流场的试验测量存在许多难, 使得数值模拟成为研究叶轮机械流 场的一种重要手段。 随着计算流体力学和计算机的快速发展, 流体机械的内部流 场研究有了很大的进展,从二维、准三维流动发展到全三维流动。 Guo 和 Kim 用定常和非定常的三维 RANS 方法分析了前向离心通

立即下载

磁流体动力学主要应用于三个方面:天体物理、受控热核反应和工业。

磁流体动力学磁流体动力学天体物理

宇宙中恒星和星际气体都是等离子体,而且有磁场,故磁流体力学首先在天体物理、太阳物理和地球物理中得到发展和应用。当前,关于太阳的研究课题有:太阳磁场的性质和起源,磁场对日冕、黑子、耀斑的影响。此外还有:星际空间无作用力场存在的可能性,太阳风与地球磁场相互作用产生的弓形激波,新星、超新星的爆发,地球磁场的起源,等等。

磁流体动力学磁流体动力学受控热核反应方面

受控热核方应方面 这方面的应用有可能使人类从海水中的氘获取巨大能源。受控热核反应的目的就是把轻元素组成的气体加热到足够发生核聚变的高温,并约束它足够的时间,以使核反应产生的能量大于所消耗的能量。对氘、氚混合气来说,要求温度达到5000万到1亿开并要求粒子密度和约束时间的乘积不小于10秒/厘米(劳孙条件)。托卡马克(环形磁约束装置)在受控热核反应研究中显出优越性。美、苏和一些西欧国家各自在托卡马克的研究上取得进展,但只得到单项指标满足劳孙条件的等离子体,没有得到温度、密度和约束时间都满足劳孙条件的等离子体。磁镜、托卡马克和其他磁约束装置的运行范围都受稳定性的限制,即电流或粒子密度越大,稳定性越差,所以必须开展对等离子体中的平衡和大尺度不稳定性预测的磁流体力学研究,以期得到稳定的并充分利用磁场的托卡马克磁约束装置。

磁流体动力学磁流体动力学工业方面

磁流体力学除了与开发和利用核聚变能有关外,还与磁流体发电密切联系。磁流体发电的原理是用等离子体取代发电机转子,省去转动部件,这样可以把普通火力发电站或核电站的效率提高15〜20%,甚至更高,既可节省能源,又能减轻污染。为了提高磁流体发电装罝的热效率,必须运用磁流体力学来分析发电通道中的流动规律,传热、传质规律和电特性。研究利用煤粉作燃料的磁流体发电对产煤丰富的国家有重要意义,这种研究目前正向工业发电阶段发展。苏联已实现天然气磁流体发电。

用导电流体取代电动机转子的设备,即用磁力驱动导电流体的装置有电磁泵和磁流体力学空间推进器(见电磁推进)。电磁泵已用于核能动力装置中传热回路内液态金属的传输,冶金和铸造工业中熔融金属的自动定量浇注和搅拌,化学工业中汞、钾、钠等有害和危险流体的输送等方面。电磁推进研究用磁场力加速等离子体以期得到比化学火箭大得多的比冲。

飞行器再入大气层时,激波、空气对飞行器的摩擦,使飞行器的表面空气受热而电离成为等离子体,因此利用磁场可以控制对飞行器的传热和阻力。但由于磁场装置过重,这种设想尚未能实现。2100433B

半导体磁流体动力学模型是一类出现在半导体器件科学中的宏观流体动力学方程组,它是在自相容电磁场的影响下描述电子和离子的,刻画了高频率条件下运转的半导体器件其内部电了的输运过程。模型方程组是由电子的质量和速度的守恒律方程祸合电磁场的Maxwell方程构成的。

目前对半导体磁流体动力学模型已经有非常多的研究。就半导体磁流体动力学模型方程组的类型而言,它是一类可对称化的拟线性双曲型方程组。一般来说,哪怕是在光滑的小初始条件下,拟线性双曲型方程组的经典解仍会在有限时问内破裂而产生激波。

磁流体力学的基本方程组有16个标量方程,包含16个未知标量,因此是完备的。结合边界条件可以求解这个方程组。在磁流体动力学中,等离子体可以看作是良导体,电磁场变化的特征时间远远大于粒子碰撞的时间,电磁场可以认为是准静态的,因此麦克斯韦方程组中的位移电流项可以忽略,写为:由于存在洛仑兹力,欧姆定律的数学形式为:等离子体是流体,满足流体的连续性方程:流体的运动方程的右边应加上电磁力项,而重力与电磁力相比是小量,常常也可以忽略不计。因此运动方程为:其中能量方程的右边应加上因电磁场引起的焦耳热,重力所做的功可以忽略不计。

流体的状态方程形式为:

p = p(ρ,T)对于绝热过程,有pρ − γ = const 理想磁流体力学方程组对于无粘、绝热、理想导电的等离子体,即理想导电流体,磁流体力学方程可以简化为:pρ − γ = const ,其称为理想磁流体力学方程组,即 pρ − γ = const。

磁流体力学相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏